Locality-sensitive hashing: Difference between revisions

Content deleted Content added
Add section for nearest neighbor without fixed dimensionality
Line 299:
* space: <math>O(n^{1+\rho}P_1^{-1})</math>, plus the space for storing data points;
* query time: <math>O(n^{\rho}P_1^{-1}(kt+d))</math>;
 
===Finding nearest neighbor without fixed dimensionality===
 
To generalize the above algorithm without radius {{mvar|R}} being fixed, we can take the algorithm and do a sort of binary search over {{mvar|R}}. It has been shown<ref>{{cite journal |last1=Har-Peled |first1=Sariel |last2=Indyk |first2=Piotr |last3=Motwani |first3=Rajeev |title=Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality |journal=Theory of Computing |date=2012 |volume=8 |issue=Special Issue in Honor of Rajeev Motwani |pages=321-350 |doi=10.4086/toc.2012.v008a014 |url=https://theoryofcomputing.org/articles/v008a014/v008a014.pdf |access-date=23 May 2025}}</ref> that there is a data structure for the approximate nearest neighbor with the following performance guarantees:
* space: <math>O(n^{1+\rho}P_1^{-1}d\log^2 n)</math>;
* query time: <math>O(n^{\rho}P_1^{-1}(kt+d)\log n)</math>;
* the algorithm succeeds in finding the nearest neighbor with probability at least <math>1 - (( 1 - P_1^k ) ^ L\log n)</math>;
 
===Improvements===