Content deleted Content added
m Move value of deprecated Template:Rp parameter to a new one |
→Practical optimizations and infinite graphs: | Altered journal. | Use this tool. Report bugs. | #UCB_Gadget |
||
Line 174:
Its complexity can be expressed in an alternative way for very large graphs: when {{math|''C''<sup>*</sup>}} is the length of the shortest path from the start node to any node satisfying the "goal" predicate, each edge has cost at least ''{{mvar|ε}}'', and the number of neighbors per node is bounded by ''{{mvar|b}}'', then the algorithm's worst-case time and space complexity are both in {{math|''O''(''b''<sup>1+⌊''C''<sup>*</sup> {{frac}} ''ε''⌋</sup>)}}.{{r|aima}}
Further optimizations for the single-target case include [[Bidirectional search|bidirectional]] variants, goal-directed variants such as the [[A* algorithm]] (see {{slink||Related problems and algorithms}}), graph pruning to determine which nodes are likely to form the middle segment of shortest paths (reach-based routing), and hierarchical decompositions of the input graph that reduce {{math|''s''–''t''}} routing to connecting ''{{mvar|s}}'' and ''{{mvar|t}}'' to their respective "[[Transit Node Routing|transit nodes]]" followed by shortest-path computation between these transit nodes using a "highway".<ref name="speedup2">{{cite conference |last1=Wagner |first1=Dorothea |last2=Willhalm |first2=Thomas |year=2007 |title=Speed-up techniques for shortest-path computations |conference=STACS |pages=23–36}}</ref> Combinations of such techniques may be needed for optimal practical performance on specific problems.<ref>{{cite journal |last1=Bauer |first1=Reinhard |last2=Delling |first2=Daniel |last3=Sanders |first3=Peter |last4=Schieferdecker |first4=Dennis |last5=Schultes |first5=Dominik |last6=Wagner |first6=Dorothea |year=2010 |title=Combining hierarchical and goal-directed speed-up techniques for Dijkstra's algorithm |url=https://publikationen.bibliothek.kit.edu/1000014952 |journal=
=== Optimality for comparison-sorting by distance ===
|