Content deleted Content added
→Heterophilic Graph Learning: | Alter: template type, title. Add: chapter-url, chapter, class, date, title, authors 1-14. Removed or converted URL. Removed parameters. Some additions/deletions were parameter name changes. | Use this tool. Report bugs. | #UCB_Gadget |
ce |
||
Line 4:
'''Graph neural networks''' ('''GNN''') are specialized [[artificial neural network]]s that are designed for tasks whose inputs are [[Graph (abstract data type)|graphs]].<ref name="wucuipeizhao2022" /><ref name="scarselli2009" /><ref name="micheli2009" /><ref name="sanchez2021" /><ref name="daigavane2021" />
One prominent example is molecular drug design.<ref>{{Cite journal |last1=Stokes |first1=Jonathan M. |last2=Yang |first2=Kevin |last3=Swanson |first3=Kyle |last4=Jin |first4=Wengong |last5=Cubillos-Ruiz |first5=Andres |last6=Donghia |first6=Nina M. |last7=MacNair |first7=Craig R. |last8=French |first8=Shawn |last9=Carfrae |first9=Lindsey A. |last10=Bloom-Ackermann |first10=Zohar |last11=Tran |first11=Victoria M. |last12=Chiappino-Pepe |first12=Anush |last13=Badran |first13=Ahmed H. |last14=Andrews |first14=Ian W. |last15=Chory |first15=Emma J. |date=2020-02-20 |title=A Deep Learning Approach to Antibiotic Discovery |journal=Cell |volume=180 |issue=4 |pages=688–702.e13 |doi=10.1016/j.cell.2020.01.021 |issn=1097-4172 |pmc=8349178 |pmid=32084340}}</ref><ref>{{
The key design element of GNNs is the use of ''pairwise message passing'', such that graph nodes iteratively update their representations by exchanging information with their neighbors. Several GNN architectures have been proposed,<ref name="scarselli2009" /><ref name="micheli2009" /><ref name="kipf2016" /><ref name="hamilton2017" /><ref name="velickovic2018" /> which implement different flavors of message passing,<ref name="bronstein2021" /><ref name="hajij2022" /> started by recursive<ref name="scarselli2009" /> or convolutional constructive<ref name="micheli2009" /> approaches. {{As of|2022}}, it is an open question whether it is possible to define GNN architectures "going beyond" message passing, or instead every GNN can be built on message passing over suitably defined graphs.<ref name="velickovic2022" />
|