Content deleted Content added
restore because it's in the ref |
review: ce for clarity. rm rep, unsourced. |
||
Line 83:
[[File:PLC Control Panel.png|thumb|upright|Control panel with PLC (gray elements in the center). The unit consists of separate elements, from left to right: power supply, controller, relay units for input and output.]]
The main difference compared to most other computing devices is that PLCs are intended for and therefore tolerant of more severe environmental conditions (such as dust, moisture, heat, cold), while offering extensive [[input/output]] (I/O) to connect the PLC to [[sensor]]s and [[actuator]]s. PLC input can include simple digital elements such as [[limit switch]]es, analog variables from process sensors (such as temperature and pressure), and more complex data such as that from positioning or [[machine vision]] systems.<ref>Harms, Toni M. & Kinner, Russell H. P.E., ''Enhancing PLC Performance with Vision Systems''. 18th Annual ESD/HMI International Programmable Controllers Conference Proceedings, 1989, p. 387-399.</ref> PLC output can include elements such as indicator lamps, sirens, [[electric motor]]s, [[pneumatic]] or [[hydraulic]] cylinders, magnetic [[relay]]s, [[solenoid]]s, or analog outputs. The input/output arrangements may be built into a simple PLC, or the PLC may have external I/O modules attached to a fieldbus or computer network that plugs into the PLC.
The functionality of the PLC has evolved over the years to include sequential relay control, motion control, [[process control]], [[distributed control system]]s, and [[computer network|networking]]. The data handling, storage, processing power, and communication capabilities of some modern PLCs are approximately equivalent to [[desktop computer]]s. PLC-like programming combined with remote I/O hardware
===Basic functions===
|