Content deleted Content added
m Open access bot: url-access updated in citation with #oabot. |
No edit summary |
||
Line 1:
{{short description|Multilinear extension of principal component analysis}}
'''Multilinear principal component analysis''' ('''MPCA''') is a [[Multilinear algebra|multilinear]] extension of [[principal component analysis]] (PCA) that is used to analyze M-way arrays, also informally referred to as "data tensors". M-way arrays may be modeled by linear tensor models, such as CANDECOMP/Parafac, or by multilinear tensor models, such as multilinear principal component analysis (MPCA) or multilinear independent component analysis (MICA).
| author = F. L. Hitchcock
| author-link = F. L. Hitchcock
Line 11 ⟶ 12:
| issue = 1–4
| doi = 10.1002/sapm192761164
}}</ref>
| authorlink1 = Ledyard R Tucker
| title = Some mathematical notes on three-mode factor analysis
Line 18 ⟶ 19:
|date=September 1966
| doi = 10.1007/BF02289464 | pmid = 5221127
}}</ref> and
(CVPR 2001, ICPR 2002), face recognition – [[TensorFaces]],<ref name="Vasilescu2002a"/><ref name="Vasilescu2003"/>
(ECCV 2002, CVPR 2003, etc.) and computer graphics – [[TensorTextures]]<ref name="Vasilescu2004"/> (Siggraph 2004).
Multilinear PCA may be applied to compute the causal factors of data formation, or as signal processing tool on data tensors whose individual observation have either been vectorized,<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a">M.A.O. Vasilescu, [[Demetri Terzopoulos|D. Terzopoulos]] (2002) [http://www.media.mit.edu/~maov/tensorfaces/eccv02_corrected.pdf "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002, in Computer Vision – ECCV 2002, Lecture Notes in Computer Science, Vol. 2350, A. Heyden et al. (Eds.), Springer-Verlag, Berlin, 2002, 447–460. ]</ref><ref name="Vasilescu2003">M.A.O. Vasilescu, D. Terzopoulos (2003) [http://www.media.mit.edu/~maov/tensorfaces/cvpr03.pdf "Multilinear Subspace Analysis for Image Ensembles,'' M. A. O. Vasilescu, D. Terzopoulos, Proc. Computer Vision and Pattern Recognition Conf. (CVPR '03), Vol.2, Madison, WI, June, 2003, 93–99.]</ref><ref name="Vasilescu2004">M.A.O. Vasilescu, D. Terzopoulos (2004) [http://www.media.mit.edu/~maov/tensortextures/Vasilescu_siggraph04.pdf "TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342. ]</ref> or whose observations are treated as a collection of column/row observations, an "
== The algorithm ==
The MPCA solution follows the alternating least square (ALS) approach. It is iterative in nature. As in PCA, MPCA works on centered data. Centering is a little more complicated for tensors, and it is problem dependent.
== Feature selection ==
|