Higher-order singular value decomposition: Difference between revisions

Content deleted Content added
WikiCleanerBot (talk | contribs)
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation)
No edit summary
Line 3:
 
 
[[Lieven De Lathauwer |De Lathauwer]] ''et al.''<ref name=":2">{{Cite journal|last1=De Lathauwer|first1=L.|last2=De Moor|first2=B.|last3=Vandewalle|first3=J.|date=2000-01-01|title=On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors|journal=SIAM Journal on Matrix Analysis and Applications|volume=21|issue=4|pages=1324–1342|doi=10.1137/S0895479898346995|issn=0895-4798|citeseerx=10.1.1.102.9135}}</ref><ref name="DeLathauwerSVD">{{Cite journal|last1=De Lathauwer|first1=L.|last2=De Moor|first2=B.|last3=Vandewalle|first3=J.|date=2000-01-01|title=A Multilinear Singular Value Decomposition|journal=SIAM Journal on Matrix Analysis and Applications|volume=21|issue=4|pages=1253–1278|doi=10.1137/s0895479896305696|issn=0895-4798|citeseerx=10.1.1.102.9135}}</ref> introduced clarity to Tucker's concepts with two highly influential papers, while [[Vasilescu]] and [[Demetri Terzopoulos| Terzopoulos]] introduced algorithmic clarity. They synthesized those ideas into an elegant two-step algorithm, one whose simplicity belies the complexity it resolves.<ref name=":Vasilescu2002">M. A. O. Vasilescu, D. Terzopoulos (2002), "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark. {{Webarchive|url=https://web.archive.org/web/20221229090931/http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf |date=2022-12-29}}</ref><ref name="Vasilescu2003">M. A. O. Vasilescu, D. Terzopoulos (2003), "Multilinear Subspace Analysis of Image Ensembles," Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’03), Madison, WI.</ref><ref name=":Vasilescu2005">M. A. O. Vasilescu, D. Terzopoulos (2005), "Multilinear Independent Component Analysis," Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA.</ref> They synthesized those ideas into an elegant two-step algorithm, one whose simplicity belies the complexity it resolves. Vasilescu and Terzopoulos introduced the '''M-mode SVD''' which is currently referred in the literature as the '''Tucker''' or the '''HOSVD'''. However, the Tucker algorithm, and De Lathauwer ''et al.'' algorithm are sequential, relying on iterative methods such as gradient descent or the power method, respectively. In contrast, the M-mode SVD is a closed-form solution that can be computed sequentially, but is also well-suited for parallel computation.
 
: This misattribution has had lasting impact on the scholarly record, obscuring the original source of a widely adopted algorithm, and complicating efforts to trace its development, reproduce results, and recognizing the respective contributions of different research efforts.