Distributed generation: Difference between revisions

Content deleted Content added
Rescuing 3 sources and tagging 0 as dead.) #IABot (v2.0.9.5) (LeapTorchGear - 23973
OAbot (talk | contribs)
m Open access bot: url-access updated in citation with #oabot.
Line 9:
DER systems typically use [[renewable energy]] sources, including [[small hydro]], [[biomass]], [[biogas]], [[solar power]], [[wind power]], and [[geothermal power]], and increasingly play an important role for the [[electric power distribution]] system. A grid-connected device for [[Grid energy storage|electricity storage]] can also be classified as a DER system and is often called a '''distributed energy storage system''' ('''DESS''').<ref>{{cite journal |last1=Nadeem |first1=Talha Bin |last2=Siddiqui |first2=Mubashir |last3=Khalid |first3=Muhammad |last4=Asif |first4=Muhammad |title=Distributed energy systems: A review of classification, technologies, applications, and policies |journal=Energy Strategy Reviews |date=2023 |volume=48 |pages=101096 |doi=10.1016/j.esr.2023.101096 |doi-access=free|bibcode=2023EneSR..4801096N }}</ref> By means of an interface, DER systems can be managed and coordinated within a [[smart grid]]. Distributed generation and storage enables the collection of energy from many sources and may lower environmental impacts{{Citation needed|date=November 2024|reason=small diesel generators can be very polluting}} and improve the security of supply.<ref>{{Cite news |last=Koshiw |first=Isobel |date=2024-04-08 |title=Russia changes tack on targeting Ukraine's energy plants |url=https://www.ft.com/content/18882abd-6277-4aae-bc43-f3e5fa786445 |access-date=2024-11-29 |work=Financial Times|___location=London}}</ref>
 
One of the major issues with the integration of the DER such as solar power, wind power, etc. is the uncertain nature of such electricity resources. This uncertainty can cause a few problems in the distribution system: (i) it makes the supply-demand relationships extremely complex, and requires complicated optimization tools to balance the network, and (ii) it puts higher pressure on the transmission network,<ref>{{Cite journal|last1=Mohammadi Fathabad|first1=Abolhassan|last2=Cheng|first2=Jianqiang|last3=Pan|first3=Kai|last4=Qiu|first4=Feng|date=2020|title=Data-driven Planning for Renewable Distributed Generation in Distribution Systems|url=https://ieeexplore.ieee.org/document/9112707|journal=IEEE Transactions on Power Systems|volume=35|issue=6|pages=4357–4368|doi=10.1109/TPWRS.2020.3001235|s2cid=225734643|issn=1558-0679|hdl=10397/89857|hdl-access=free|url-access=subscription}}</ref> and (iii) it may cause reverse power flow from the distribution system to transmission system.<ref>{{Cite journal|last1=De Carne|first1=Giovanni|last2=Buticchi|first2=Giampaolo|last3=Zou|first3=Zhixiang|last4=Liserre|first4=Marco|date=July 2018|title=Reverse Power Flow Control in a ST-Fed Distribution Grid|journal=IEEE Transactions on Smart Grid|volume=9|issue=4|pages=3811–3819|doi=10.1109/TSG.2017.2651147|s2cid=49354817|issn=1949-3061|url=https://nbn-resolving.org/urn:nbn:de:gbv:8-publ-14890}}</ref>
 
[[Microgrid]]s are modern, localized, small-scale grids,<ref>{{Cite book|last1=Saleh|first1=M.|last2=Esa|first2=Y.|last3=Mhandi|first3=Y.|last4=Brandauer|first4=W.|last5=Mohamed|first5=A.|title=2016 IEEE Industry Applications Society Annual Meeting |chapter=Design and implementation of CCNY DC microgrid testbed |date=October 2016|pages=1–7|doi=10.1109/IAS.2016.7731870|isbn=978-1-4799-8397-1|s2cid=16464909|chapter-url=https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1722&context=cc_pubs}}</ref><ref>{{Cite book|last1=Saleh|first1=M. S.|last2=Althaibani|first2=A.|last3=Esa|first3=Y.|last4=Mhandi|first4=Y.|last5=Mohamed|first5=A. A.|title=2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE) |chapter=Impact of clustering microgrids on their stability and resilience during blackouts |date=October 2015|pages=195–200|doi=10.1109/ICSGCE.2015.7454295|isbn=978-1-4673-8732-3|s2cid=25664994|chapter-url=https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=1623&context=cc_pubs}}</ref> contrary to the traditional, centralized [[electricity grid]] (macrogrid). Microgrids can disconnect from the centralized grid and operate autonomously, strengthen grid resilience, and help mitigate grid disturbances. They are typically low-voltage AC grids, often use [[diesel generator]]s, and are installed by the community they serve. Microgrids increasingly employ a mixture of different distributed energy resources, such as [[solar hybrid power systems]], which significantly reduce the amount of carbon emitted.