Lemniscate elliptic functions: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: volume, series, url. URLs might have been anonymized. Add: eprint, bibcode, archive-date, archive-url, jstor, isbn, doi. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | #UCB_toolbar
References: |class=math.CV
Line 1,329:
* {{cite book |last1=Reinhardt |first1=William P. |last2=Walker |first2=Peter L. |year=2010a |display-editors=1 |editor1-last=Olver |editor1-first=Frank |editor2-last=Lozier |editor2-first=Daniel |editor3-last=Boisvert |editor3-first=Ronald |editor4-last=Clark |editor4-first=Charles |title=NIST Handbook of Mathematical Functions |publisher=Cambridge |chapter=22. Jacobian Elliptic Functions |chapter-url=https://dlmf.nist.gov/22 |title-link=Digital Library of Mathematical Functions }}
* {{cite book |last1=Reinhardt |first1=William P. |last2=Walker |first2=Peter L. |year=2010b |display-editors=1 |editor1-last=Olver |editor1-first=Frank |editor2-last=Lozier |editor2-first=Daniel |editor3-last=Boisvert |editor3-first=Ronald |editor4-last=Clark |editor4-first=Charles |title=NIST Handbook of Mathematical Functions |publisher=Cambridge |chapter=23. Weierstrass Elliptic and Modular Functions |chapter-url=https://dlmf.nist.gov/23 |title-link=Digital Library of Mathematical Functions }}
* {{cite arXiv |last1=Robinson |first1=Paul L. |title=The Lemniscatic Functions |date=2019a |eprint=1902.08614 |class=math.CV}}
* {{cite arXiv |last1=Robinson |first1=Paul L. |title= The Elliptic Functions in a First-Order System |date=2019b |eprint=1903.07147 |class=math.CV}}
* {{cite journal |last1=Rosen |first1=Michael |authorlink1=Michael Rosen (mathematician) |title=Abel's Theorem on the Lemniscate |journal=The American Mathematical Monthly |date=1981 |volume=88 |issue=6 |pages=387–395 |doi=10.2307/2321821 |jstor=2321821 }}
* {{cite book |last1=Roy |first1=Ranjan |title=Elliptic and Modular Functions from Gauss to Dedekind to Hecke |publisher=Cambridge University Press |page=28 |year=2017 |isbn=978-1-107-15938-9}}