Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
{{short description|Multilinear extension of principal component analysis}}
'''Multilinear principal component analysis''' ('''MPCA''') is a [[Multilinear algebra|multilinear]] extension of [[principal component analysis]] (PCA) that is used to analyze M-way arrays, also informally referred to as "data tensors". M-way arrays may be modeled by
* '''linear tensor models''', such as [[Tensor rank|CANDECOMP/Parafac]], or by * '''multilinear tensor models''', such as '''multilinear principal component analysis (MPCA)'''<ref name=Vasilescu2002a/><ref name=Vasilescu2003/> or '''multilinear (tensor) independent component analysis (MICA)'''.<ref name=MPCA-MICA2005/> In 2005, [[Vasilescu]] and [[Demetri Terzopoulos|Terzopoulos]] introduced the '''Multilinear PCA'''<ref name="MPCA-MICA2005">M. A. O. Vasilescu, D. Terzopoulos (2005) [http://www.media.mit.edu/~maov/mica/mica05.pdf "Multilinear Independent Component Analysis"], "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, June 2005, vol.1, 547–553."</ref> terminology as a way to better differentiate between
Multilinear PCA may be applied to compute the causal factors of data formation, or as signal processing tool on data tensors whose individual observation have either been vectorized,<ref name="Vasilescu2002b"/><ref name="Vasilescu2002a">M.A.O. Vasilescu, [[Demetri Terzopoulos|D. Terzopoulos]] (2002) [http://www.media.mit.edu/~maov/tensorfaces/eccv02_corrected.pdf "Multilinear Analysis of Image Ensembles: TensorFaces," Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark, May, 2002, in Computer Vision – ECCV 2002, Lecture Notes in Computer Science, Vol. 2350, A. Heyden et al. (Eds.), Springer-Verlag, Berlin, 2002, 447–460. ]</ref><ref name="Vasilescu2003">M.A.O. Vasilescu, D. Terzopoulos (2003) [http://www.media.mit.edu/~maov/tensorfaces/cvpr03.pdf "Multilinear Subspace Analysis for Image Ensembles,'' M. A. O. Vasilescu, D. Terzopoulos, Proc. Computer Vision and Pattern Recognition Conf. (CVPR '03), Vol.2, Madison, WI, June, 2003, 93–99.]</ref><ref name="Vasilescu2004">M.A.O. Vasilescu, D. Terzopoulos (2004) [http://www.media.mit.edu/~maov/tensortextures/Vasilescu_siggraph04.pdf "TensorTextures: Multilinear Image-Based Rendering", M. A. O. Vasilescu and D. Terzopoulos, Proc. ACM SIGGRAPH 2004 Conference Los Angeles, CA, August, 2004, in Computer Graphics Proceedings, Annual Conference Series, 2004, 336–342. ]</ref> or whose observations are treated as a collection of column/row observations, an "observation as a matrix", and concatenated into a data tensor. The
Vasilescu and Terzopoulos in their paper "[[
or the '''Tucker''' which employ the power method or gradient descent, respectively.
or the '''Tucker''' which are sequential itterative algorithms that employ the power method or gradient descent, respectively. Vasilescu and Terzopoulos framed the data analysis, recognition and synthesis problems as multilinear tensor problems. Data is viewed as the compositional consequence of several causal factors, and which are well suited for multi-modal tensor factor analysis. The power of the tensor framework was showcased by analyzing human motion joint angles, facial images or textures in the following papers: Human Motion Signatures<ref name="Vasilescu2002b">M.A.O. Vasilescu (2002) [http://www.media.mit.edu/~maov/motionsignatures/hms_icpr02_corrected.pdf "Human Motion Signatures: Analysis, Synthesis, Recognition," Proceedings of International Conference on Pattern Recognition (ICPR 2002), Vol. 3, Quebec City, Canada, Aug, 2002, 456–460.]</ref>▼
▲
(CVPR 2001, ICPR 2002), face recognition – [[TensorFaces]],<ref name="Vasilescu2002a"/><ref name="Vasilescu2003"/>
(ECCV 2002, CVPR 2003, etc.) and computer graphics – [[TensorTextures]]<ref name="Vasilescu2004"/> (Siggraph 2004).
|