Jacobi elliptic functions: Difference between revisions

Content deleted Content added
OAbot (talk | contribs)
m Open access bot: url-access=subscription updated in citation with #oabot.
m URLs duplicate DOIs
Line 5:
[[Image:JacobiFunctionAbstract.png|322px|thumb|The fundamental rectangle in the complex plane of <math>u</math>]]
 
There are twelve Jacobi elliptic functions denoted by <math>\operatorname{pq}(u, m)</math>, where <math>\mathrm p</math> and <math>\mathrm q</math> are any of the letters <math>\mathrm c</math>, <math>\mathrm s</math>, <math>\mathrm n</math>, and <math>\mathrm d</math>. (Functions of the form <math>\operatorname{pp}(u,m)</math> are trivially set to unity for notational completeness.) <math>u</math> is the argument, and <math>m</math> is the parameter, both of which may be complex. In fact, the Jacobi elliptic functions are [[meromorphic function|meromorphic]] in both <math>u</math> and <math>m</math>.<ref name="Walker">{{cite journal |last1=Walker |first1=Peter |date=2003 |title=The Analyticity of Jacobian Functions with Respect to the Parameter k |url=https://www.jstor.org/stable/3560143 |bibcode=<!-- useless bibcode 2003RSPSA.459.2569W --> |journal=Proceedings of the Royal Society |volume=459 |issue=2038 |pages=2569–2574|doi=10.1098/rspa.2003.1157 |jstor=3560143 |s2cid=121368966 }}</ref> The distribution of the zeros and poles in the <math>u</math>-plane is well-known. However, questions of the distribution of the zeros and poles in the <math>m</math>-plane remain to be investigated.<ref name="Walker"/>
 
In the complex plane of the argument <math>u</math>, the twelve functions form a repeating lattice of simple [[Zeros and poles|poles and zeroes]].<ref name="DLMF22">{{cite web|url=http://dlmf.nist.gov/22|title=NIST Digital Library of Mathematical Functions (Release 1.0.17)|editor-last=Olver|editor-first=F. W. J.|display-editors=et al |date=2017-12-22|publisher=National Institute of Standards and Technology|access-date=2018-02-26 }}</ref> Depending on the function, one repeating parallelogram, or unit cell, will have sides of length <math>2K</math> or <math>4K</math> on the real axis, and <math>2K'</math> or <math>4K'</math> on the imaginary axis, where <math>K=K(m)</math> and <math>K'=K(1-m)</math> are known as the [[quarter period]]s with <math>K(\cdot)</math> being the [[elliptic integral]] of the first kind. The nature of the unit cell can be determined by inspecting the "auxiliary rectangle" (generally a parallelogram), which is a rectangle formed by the origin <math>(0,0)</math> at one corner, and <math>(K,K')</math> as the diagonally opposite corner. As in the diagram, the four corners of the auxiliary rectangle are named <math>\mathrm s</math>, <math>\mathrm c</math>, <math>\mathrm d</math>, and <math>\mathrm n</math>, going counter-clockwise from the origin. The function <math>\operatorname{pq}(u,m)</math> will have a zero at the <math>\mathrm p</math> corner and a pole at the <math>\mathrm q</math> corner. The twelve functions correspond to the twelve ways of arranging these poles and zeroes in the corners of the rectangle.
Line 88:
In the above, the value <math>m</math> is a free parameter, usually taken to be real such that <math>0\leq m \leq 1</math> (but can be complex in general), and so the elliptic functions can be thought of as being given by two variables, <math>u</math> and the parameter&nbsp;<math>m</math>. The remaining nine elliptic functions are easily built from the above three (<math>\operatorname{sn}</math>, <math>\operatorname{cn}</math>, <math>\operatorname{dn}</math>), and are given in a section below. Note that when <math>\varphi=\pi/2</math>, that <math>u</math> then equals the [[quarter period]]&nbsp;<math>K</math>.
 
In the most general setting, <math>\operatorname{am}(u,m)</math> is a [[multivalued function]] (in <math>u</math>) with infinitely many [[Branch point|logarithmic branch points]] (the branches differ by integer multiples of <math>2\pi</math>), namely the points <math>2sK(m)+(4t+1)K(1-m)i</math> and <math>2sK(m)+(4t+3)K(1-m)i</math> where <math>s,t\in\mathbb{Z}</math>.<ref name="sala">{{cite journal |last=Sala |first=Kenneth L. |date=November 1989 |title=Transformations of the Jacobian Amplitude Function and Its Calculation via the Arithmetic-Geometric Mean|url=https://epubs.siam.org/doi/abs/10.1137/0520100 |journal=SIAM Journal on Mathematical Analysis|volume=20|issue=6|pages=1514–1528|doi=10.1137/0520100 |url-access=subscription}}</ref> This multivalued function can be made single-valued by cutting the complex plane along the line segments joining these branch points (the cutting can be done in non-equivalent ways, giving non-equivalent single-valued functions), thus making <math>\operatorname{am}(u,m)</math> [[Analytic function|analytic]] everywhere except on the [[Branch point#Branch cuts|branch cuts]]. In contrast, <math>\sin\operatorname{am}(u,m)</math> and other elliptic functions have no branch points, give consistent values for every branch of <math>\operatorname{am}</math>, and are [[meromorphic function|meromorphic]] in the whole complex plane. Since every elliptic function is meromorphic in the whole complex plane (by definition), <math>\operatorname{am}(u,m)</math> (when considered as a single-valued function) is not an elliptic function.
 
However, a particular cutting for <math>\operatorname{am}(u,m)</math> can be made in the <math>u</math>-plane by line segments from <math>2sK(m)+(4t+1)K (1-m)i</math> to <math>2sK(m)+(4t+3)K(1-m)i</math> with <math>s,t\in\mathbb{Z}</math>; then it only remains to define <math>\operatorname{am}(u,m)</math> at the branch cuts by continuity from some direction. Then <math>\operatorname{am}(u,m)</math> becomes single-valued and singly-periodic in <math>u</math> with the minimal period <math>4iK(1-m)</math> and it has singularities at the logarithmic branch points mentioned above. If <math>m\in\mathbb{R}</math> and <math>m\le 1</math>, <math>\operatorname{am}(u,m)</math> is continuous in <math>u</math> on the real line. When <math>m>1</math>, the branch cuts of <math>\operatorname{am}(u,m)</math> in the <math>u</math>-plane cross the real line at <math>2(2s+1)K(1/m)/\sqrt{m}</math> for <math>s\in\mathbb{Z}</math>; therefore for <math>m>1</math>, <math>\operatorname{am}(u,m)</math> is not continuous in <math>u</math> on the real line and jumps by <math>2\pi</math> on the discontinuities.
Line 776:
when <math>\left|\operatorname{Im}(u/K)\right|<\operatorname{Im}(iK'/K).</math>
 
Bivariate power series expansions have been published by Schett.<ref>{{cite journal|first1=Alois|last1=Schett |title=Properties of the Taylor series expansion coefficients of the Jacobian Elliptic Functions|year=1976|journal=Math. Comp.|volume=30|number=133|pages=143–147|doi=10.1090/S0025-5718-1976-0391477-3| mr=0391477 |s2ciddoi-access=120666361free }}</ref>
 
==Fast computation==
Line 798:
In conjunction with the addition theorems for elliptic functions (which hold for complex numbers in general) and the Jacobi transformations, the method of computation described above can be used to compute all Jacobi elliptic functions in the whole complex plane.
 
Another method of fast computation of the Jacobi elliptic functions via the arithmetic–geometric mean, avoiding the computation of the Jacobi amplitude, is due to Herbert E. Salzer:<ref>{{cite journal |last=Salzer |first=Herbert E. |date=July 1962 |title=Quick calculation of Jacobian elliptic functions|journal=Communications of the ACM|volume=5|issue=7|pages=399|doi=10.1145/368273.368573 |s2cid=44953400 |doi-access=free }}</ref>
 
Let
Line 815:
as <math>N\to\infty</math>.
 
Yet, another method for a rapidly converging fast computation of the Jacobi elliptic sine function found in the literature is shown below.<ref>{{Cite journal |last=Smith |first=John I. |date=May 5, 1971 |title=The Even- and Odd-Mode Capacitance Parameters for Coupled Lines in Suspended Substrate |url=https://ieeexplore.ieee.org/document/1127543 |journal=IEEE Transactions on Microwave Theory and Techniques |volume=MTT-19 |issue=5 |pages=430 |doi=10.1109/TMTT.1971.1127543 |bibcode=<!-- useless bibcode 1971ITMTT..19..424S |via=IEEE Xplore|url-access=subscription-> }}</ref>
 
Let:
Line 876:
== {{anchor|arcsn|arccn|arcdn}}Inverse functions ==
 
The inverses of the Jacobi elliptic functions can be defined similarly to the [[inverse trigonometric functions]]; if <math>x=\operatorname{sn}(\xi, m)</math>, <math>\xi=\operatorname{arcsn}(x, m)</math>. They can be represented as elliptic integrals,<ref>{{dlmf|title=§22.15 Inverse Functions|first1=W. P.|last1=Reinhardt|first2=P. L.|last2=Walker|id=22.15}}</ref><ref>{{cite web|last=Ehrhardt|first=Wolfgang|title=The AMath and DAMath Special Functions: Reference Manual and Implementation Notes|url=http://www.wolfgang-ehrhardt.de/specialfunctions.pdf|access-date=17 July 2013|page=42|archive-url=https://web.archive.org/web/20160731033441/http://www.wolfgang-ehrhardt.de/specialfunctions.pdf|archive-date=31 July 2016|url-status=dead}}</ref><ref>{{cite book|last1=Byrd|first1=P.F.|last2=Friedman|first2=M.D.|title=Handbook of Elliptic Integrals for Engineers and Scientists|date=1971|publisher=Springer-Verlag|___location=Berlin|edition=2nd}}</ref> and power series representations have been found.<ref>{{cite journal|last=Carlson|first=B. C.|title=Power series for inverse Jacobian elliptic functions|journal=Mathematics of Computation|year=2008|volume=77|issue=263|pages=1615–1621|url=https://www.ams.org/journals/mcom/2008-77-263/S0025-5718-07-02049-2/S0025-5718-07-02049-2.pdf|access-date=17 July 2013|doi=10.1090/s0025-5718-07-02049-2|bibcode=<!-- useless bibcode 2008MaCom..77.1615C -->|doi-access=free}}</ref><ref name="DLMF22"/>
 
*<math>\operatorname{arcsn}(x,m) = \int_0^x \frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-mt^2)}}</math>