Weakly interacting massive particle: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Added hdl. | Use this bot. Report bugs. | Suggested by Folkezoft | Category:Dark matter | #UCB_Category 16/68
Recent limits: general c/e in this section
Line 82:
 
There are currently no confirmed detections of dark matter from direct detection experiments, with the strongest exclusion limits coming from the [[Large Underground Xenon experiment|LUX]] and [[Cryogenic Dark Matter Search|SuperCDMS]] experiments, as shown in figure 2.
With 370 kilograms of xenon, LUX is more sensitive than XENON or CDMS.<ref>
{{cite web |url=https://www.science.org/content/article/new-experiment-torpedoes-lightweight-dark-matter-particles |title=New Experiment Torpedoes Lightweight Dark Matter Particles |date=30 October 2013 |access-date=6 May 2014}}
</ref> FirstThe first results from October 2013 report that no signals were seen, appearing to refute results obtained from less sensitive instruments.<ref>
{{cite web |url=http://newscenter.lbl.gov/news-releases/2013/10/30/lux-first-results/ |title=First Results from LUX, the World's Most Sensitive Dark Matter Detector |publisher=Berkeley Lab News Center |date=30 October 2013 |access-date=6 May 2014}}
</ref> and thisThis was confirmed after the final data run ended in May 2016.<ref>[https://www.science.org/content/article/dark-matter-search-comes-empty Dark matter search comes up empty. July 2016]</ref>
 
Historically, there have been four anomalous sets of data from different direct detection experiments, two of which have now been explained with backgrounds ([[CoGeNT]] and CRESST-II), and two which remain unexplained ([[DAMA/LIBRA]] and [[Cryogenic Dark Matter Search|CDMS-Si]]).<ref>{{cite journal |title=Largest-ever dark-matter experiment poised to test popular theory |url=http://www.nature.com/news/largest-ever-dark-matter-experiment-poised-to-test-popular-theory-1.18772 |journal=Nature |access-date=15 January 2017|doi=10.1038/nature.2015.18772 |year=2015 |last1=Cartlidge |first1=Edwin |s2cid=182831370 |url-access=subscription }}</ref><ref>{{cite journal |last1=Davis |first1=Jonathan H. |date=2015 |title=The Past and Future of Light Dark Matter Direct Detection |journal=International Journal of Modern Physics A |volume=30 |issue=15 |page=1530038 |arxiv=1506.03924 |bibcode=2015IJMPA..3030038D |doi=10.1142/S0217751X15300380 |s2cid=119269304}}</ref> In February 2010, researchers at CDMS announced that they had observed two events that may have been caused by WIMP-nucleus collisions.<ref name="strib">{{cite web |url=http://www.startribune.com/local/79624932.html?page=1&c=y |title=Key to the universe found on the Iron Range? |website=[[Star Tribune]] |access-date=December 18, 2009}}</ref><ref>
{{cite web
|url = http://cdms.berkeley.edu/0912.3592v1.pdf
Line 107:
}}</ref><ref>{{cite journal |author=The CDMS II Collaboration |date=2010 |title=Dark Matter Search Results from the CDMS II Experiment |journal=Science |volume=327 |issue=5973 |pages=1619–1621 |arxiv=0912.3592 |bibcode=2010Sci...327.1619C |doi=10.1126/science.1186112 |pmid=20150446 |s2cid=2517711}}</ref>
 
[[CoGeNT]], a smaller detector using a single germanium puck, designed to sense WIMPs with smaller masses, reported hundreds of detection events in 56 days.<ref name="NN-2010-02-26">{{cite journal |author=Hand |first=Eric |date=2010-02-26 |title=A CoGeNT result in the hunt for dark matter |url=http://www.nature.com/news/2010/100226/full/news.2010.97.html |journal=Nature |publisher=Nature News |doi=10.1038/news.2010.97|url-access=subscription }}</ref><ref>{{cite journal |title=Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector |author=C. E. Aalseth |collaboration=CoGeNT collaboration |doi=10.1103/PhysRevLett.106.131301 |date=2011 |journal=Physical Review Letters |volume=106 |issue=13 |arxiv=1002.4703 |bibcode=2011PhRvL.106m1301A |pmid=21517370 |page=131301|s2cid=24822628 }}</ref> They observed an annual modulation in the event rate that could indicate light dark matter.<ref name="Dacey2011">{{cite web |last1=Dacey |first1=James |date=June 2011 |title=CoGeNT findings support dark-matter halo theory |url=http://physicsworld.com/cws/article/news/2011/jun/15/cogent-findings-support-dark-matter-halo-theory |access-date=5 May 2015 |publisher=physicsworld}}</ref> However, a dark matter origin for the CoGeNT events has been refuted by more recent analyses, in favour of an explanation in terms of a background from surface events.<ref>{{cite journal |last1=Davis |first1=Jonathan H. |last2=McCabe |first2=Christopher |last3=Boehm |first3=Celine |title=Quantifying the evidence for Dark Matter in CoGeNT data |journal=Journal of Cosmology and Astroparticle Physics |date=2014 |volume=1408 |issue=8 |page=014 |doi=10.1088/1475-7516/2014/08/014 |arxiv = 1405.0495 |bibcode = 2014JCAP...08..014D |s2cid=54532870 }}</ref>
 
Annual modulation is one of the predicted signatures of a WIMP signal,<ref>{{cite journal|last1=Drukier|first1=Andrzej K.|last2=Freese|first2=Katherine|last3=Spergel|first3=David N.|title=Detecting cold dark-matter candidates|journal=Physical Review D|date=15 June 1986|volume=33|issue=12|pages=3495–3508|doi=10.1103/PhysRevD.33.3495|pmid=9956575|bibcode=1986PhRvD..33.3495D}}</ref><ref name="Freese1988">{{cite journal |author=Freese |first1=K. |last2=Frieman |first2=J. |last3=Gould |first3=A. |year=1988 |title=Signal Modulation in Cold Dark Matter Detection |journal=Physical Review D |volume=37 |issue=12 |pages=3388–3405 |bibcode=1988PhRvD..37.3388F |doi=10.1103/PhysRevD.37.3388 |osti=1448427 |pmid=9958634 |s2cid=2610174}}</ref> and on this basis the DAMA collaboration has claimed a positive detection. Other groups, however, have not confirmed this result. The CDMS data, made public in May 2004. exclude the entire DAMA signal region given certain standard assumptions about the properties of the WIMPs and the dark matter halo, and this has been followed by many other experiments (see Figure 2).
 
The [[Korea Invisible Mass Search#COSINE|COSINE-100]] collaboration (a merging of KIMS and DM-Ice groups) published their results on replicating the DAMA/LIBRA signal in December 2018 in journal Nature; their conclusion was that "this result rules out WIMP–nucleon interactions as the cause of the annual modulation observed by the DAMA collaboration".<ref>{{cite journal | doi=10.1038/s41586-018-0739-1|pmid = 30518890| title=An experiment to search for dark-matter interactions using sodium iodide detectors| journal=Nature| volume=564| issue=7734| pages=83–86| year=2018| author1=COSINE-100 Collaboration| bibcode=2018Natur.564...83C|arxiv = 1906.01791|s2cid = 54459495}}</ref> In 2021, new results from COSINE-100 and [[ANAIS-112]] both failed to replicate the DAMA/LIBRA signal<ref>{{cite journal |last1=Amaré |first1=J. |last2=Cebrián |first2=S. |last3=Cintas |first3=D. |last4=Coarasa |first4=I. |last5=García |first5=E. |last6=Martínez |first6=M. |last7=Oliván |first7=M. A. |last8=Ortigoza |first8=Y. |last9=de Solórzano |first9=A. Ortiz |last10=Puimedón |first10=J. |last11=Salinas |first11=A. |date=2021-05-27 |title=Annual modulation results from three-year exposure of ANAIS-112 |url=https://link.aps.org/doi/10.1103/PhysRevD.103.102005 |journal=Physical Review D |language=en |volume=103 |issue=10 |pages=102005 |arxiv=2103.01175 |bibcode=2021PhRvD.103j2005A |doi=10.1103/PhysRevD.103.102005 |issn=2470-0010 |s2cid=232092298}}</ref><ref>{{cite journal |last1=Adhikari |first1=Govinda |last2=de Souza |first2=Estella B. |last3=Carlin |first3=Nelson |last4=Choi |first4=Jae Jin |last5=Choi |first5=Seonho |last6=Djamal |first6=Mitra |last7=Ezeribe |first7=Anthony C. |last8=França |first8=Luis E. |last9=Ha |first9=Chang Hyon |last10=Hahn |first10=In Sik |last11=Jeon |first11=Eunju |date=2021-11-12 |title=Strong constraints from COSINE-100 on the DAMA dark matter results using the same sodium iodide target |journal=Science Advances |language=en |volume=7 |issue=46 |pages=eabk2699 |bibcode=2021SciA....7.2699A |doi=10.1126/sciadv.abk2699 |issn=2375-2548 |pmc=8580298 |pmid=34757778|arxiv=2104.03537 }}</ref><ref>{{cite web |title=Is the end in sight for famous dark matter claim? |url=https://www.science.org/content/article/end-sight-famous-dark-matter-claim |access-date=2021-12-29 |website=www.science.org |language=en}}</ref> and in August 2022, COSINE-100 applied an analysis method similar to one used by DAMA/LIBRA and found a similar annual modulation suggesting the signal could be just a statistical artifact,<ref>{{cite journal |last1=Adhikari |first1=G. |last2=Carlin |first2=N. |last3=Choi |first3=J. J. |last4=Choi |first4=S. |last5=Ezeribe |first5=A. C. |last6=Franca |first6=L. E. |last7=Ha |first7=C. |last8=Hahn |first8=I. S. |last9=Hollick |first9=S. J. |last10=Jeon |first10=E. J. |last11=Jo |first11=J. H. |last12=Joo |first12=H. W. |last13=Kang |first13=W. G. |last14=Kauer |first14=M. |last15=Kim |first15=B. H. |date=2023 |title=An induced annual modulation signature in COSINE-100 data by DAMA/LIBRA's analysis method |journal=Scientific Reports |volume=13 |issue=1 |page=4676 |doi=10.1038/s41598-023-31688-4 |pmid=36949218 |pmc=10033922 |arxiv=2208.05158 |bibcode=2023NatSR..13.4676A }}</ref><ref>{{cite journal |last=Castelvecchi |first=Davide |date=2022-08-16 |title=Notorious dark-matter signal could be due to analysis error |url=https://www.nature.com/articles/d41586-022-02222-9 |journal=Nature |language=en |doi=10.1038/d41586-022-02222-9|pmid=35974221 |s2cid=251624302 |url-access=subscription }}</ref> supporting a hypothesis first put forward in 2020.<ref>{{cite journal |author=Buttazzo |first=D. |display-authors=etal |year=2020 |title=Annual modulations from secular variations: relaxing DAMA? |journal=Journal of High Energy Physics |volume=2020 |issue=4 |page=137 |arxiv=2002.00459 |bibcode=2020JHEP...04..137B |doi=10.1007/JHEP04(2020)137 |s2cid=211010848}}</ref>
 
=== Future of direct detection ===
Line 118:
The 2020s should see the emergence of several multi-tonne mass direct detection experiments, which will probe WIMP-nucleus cross sections orders of magnitude smaller than the current state-of-the-art sensitivity. Examples of such next-generation experiments are LUX-ZEPLIN (LZ) and XENONnT, which are multi-tonne liquid xenon experiments, followed by DARWIN, another proposed liquid xenon direct detection experiment of 50–100 tonnes.<ref>{{cite arXiv |eprint=1110.0103|last1= Malling|first1= D. C.|title= After LUX: The LZ Program |display-authors= etal |class= astro-ph.IM|year= 2011}}</ref><ref>{{cite journal |last1=Baudis |first1=Laura |title=DARWIN: dark matter WIMP search with noble liquids |journal=J. Phys. Conf. Ser. |date=2012 |volume=375 |issue=1 |page=012028 |doi=10.1088/1742-6596/375/1/012028 |arxiv=1201.2402|bibcode=2012JPhCS.375a2028B |s2cid=30885844 }}</ref>
 
Such multi-tonne experiments will also face a new background in the form of neutrinos, which will limit their ability to probe the WIMP parameter space beyond a certain point, known as the neutrino floor. However, although its name may imply a hard limit, the neutrino floor represents the region of parameter space beyond which experimental sensitivity can only improve at best as the square root of exposure (the product of detector mass and running time).<ref>{{cite journal |last1=Billard |first1=J. |last2=Strigari |first2=L. |last3=Figueroa-Feliciano |first3=E. |date=2014 |title=Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments |journal=Physical Review D |volume=89 |issue=2 |page=023524 |arxiv=1307.5458 |bibcode=2014PhRvD..89b3524B |doi=10.1103/PhysRevD.89.023524 |s2cid=16208132}}</ref><ref>{{cite journal |last1=Davis |first1=Jonathan H. |title=Dark Matter vs. Neutrinos: The effect of astrophysical uncertainties and timing information on the neutrino floor |journal=Journal of Cosmology and Astroparticle Physics |date=2015 |volume=1503 |issue=3 |page=012 |doi=10.1088/1475-7516/2015/03/012 |arxiv=1412.1475|bibcode = 2015JCAP...03..012D |s2cid=118596203 }}</ref> For WIMP masses below 10&nbsp;GeV/''c''<sup>2</sup>, the dominant source of neutrino background is from the [[Solar neutrino|Sun]], while for higher masses the background contains contributions from [[Neutrino#Atmospheric|atmospheric neutrino]]s and the [[diffuse supernova neutrino background]].
 
In December 2021, results from [[PandaX]] have found no signal in their data, with a lowest excluded cross section of {{val|3.8|e=-47|ul=cm2}} at 40&nbsp;GeV with 90% confidence level.<ref name="Meng et al-2021">{{cite journal|last1=Meng|first1=Yue|last2=Wang|first2=Zhou|last3=Tao|first3=Yi|last4=Abdukerim|first4=Abdusalam|last5=Bo|first5=Zihao|last6=Chen|first6=Wei|last7=Chen|first7=Xun|last8=Chen|first8=Yunhua|last9=Cheng|first9=Chen|last10=Cheng|first10=Yunshan|last11=Cui|first11=Xiangyi|date=2021-12-23|title=Dark Matter Search Results from the PandaX-4T Commissioning Run|url=https://link.aps.org/doi/10.1103/PhysRevLett.127.261802|journal=Physical Review Letters|language=en|volume=127|issue=26|pages=261802|doi=10.1103/PhysRevLett.127.261802|pmid=35029500| arxiv=2107.13438 | bibcode=2021PhRvL.127z1802M |s2cid=236469421|issn=0031-9007}}</ref><ref name="Stephens-2021">{{cite journal|last=Stephens|first=Marric|date=2021-12-23|title=Tightening the Net on Two Kinds of Dark Matter|url=https://physics.aps.org/articles/v14/s164|journal=Physics|language=en|volume=14| doi=10.1103/Physics.14.s164 | bibcode=2021PhyOJ..14.s164S | s2cid=247277808 |doi-access=free}}</ref>
 
In July 2023, the [[XENON#XENONnT|XENONnT]] and [[LZ experiment]] published the first results of their searches for WIMPs,<ref>{{cite journal |last=Day |first=Charles |date=2023-07-28 |title=The Search for WIMPs Continues |url=https://physics.aps.org/articles/v16/s106 |journal=Physics |volume=16 |pages=s106 |doi=10.1103/Physics.16.s106 |bibcode=2023PhyOJ..16.s106D |s2cid=260751963 |language=en |doi-access=free }}</ref> the first excluding cross sections above {{val|2.58|e=-47|u=cm2}} at 28&nbsp;GeV with 90% confidence level<ref>{{cite journal |last1=XENON Collaboration |last2=Aprile |first2=E. |last3=Abe |first3=K. |last4=Agostini |first4=F. |last5=Ahmed Maouloud |first5=S. |last6=Althueser |first6=L. |last7=Andrieu |first7=B. |last8=Angelino |first8=E. |last9=Angevaare |first9=J. R. |last10=Antochi |first10=V. C. |last11=Antón Martin |first11=D. |last12=Arneodo |first12=F. |last13=Baudis |first13=L. |last14=Baxter |first14=A. L. |last15=Bazyk |first15=M. |date=2023-07-28 |title=First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment |url=https://link.aps.org/doi/10.1103/PhysRevLett.131.041003 |journal=Physical Review Letters |volume=131 |issue=4 |pages=041003 |doi=10.1103/PhysRevLett.131.041003|pmid=37566859 |arxiv=2303.14729 |bibcode=2023PhRvL.131d1003A |s2cid=257767449 }}</ref> and the second excluding cross sections above {{val|9.2|e=-48|u=cm2}} at 36&nbsp;GeV with 90% confidence level.<ref>{{cite journal |last1=LUX-ZEPLIN Collaboration |last2=Aalbers |first2=J. |last3=Akerib |first3=D. S. |last4=Akerlof |first4=C. W. |last5=Al Musalhi |first5=A. K. |last6=Alder |first6=F. |last7=Alqahtani |first7=A. |last8=Alsum |first8=S. K. |last9=Amarasinghe |first9=C. S. |last10=Ames |first10=A. |last11=Anderson |first11=T. J. |last12=Angelides |first12=N. |last13=Araújo |first13=H. M. |last14=Armstrong |first14=J. E. |last15=Arthurs |first15=M. |date=2023-07-28 |title=First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment |url=https://link.aps.org/doi/10.1103/PhysRevLett.131.041002 |journal=Physical Review Letters |volume=131 |issue=4 |pages=041002 |doi=10.1103/PhysRevLett.131.041002|pmid=37566836 |arxiv=2207.03764 |bibcode=2023PhRvL.131d1002A |s2cid=250343331 }}</ref>
 
== See also ==