Content deleted Content added
Randi Moth (talk | contribs) →Complexity classes: Add {{Redirect}} Tags: Mobile edit Mobile app edit Android app edit App section source |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
Line 38:
Note that <math>\mathsf{FPT} = W[0]</math> and <math>W[i] \subseteq W[j]</math> for all <math>i\le j</math>. The classes in the ''W'' hierarchy are also closed under fpt-reduction.
A complete problem for ''W''[''i''] is '''Weighted ''i''-Normalized Satisfiability''':<ref>{{cite journal |last1=Downey |first1=Rod G. |last2=Fellows |first2=Michael R. |title=Fixed-Parameter Tractability and Completeness I: Basic Results |journal=SIAM Journal on Computing |date=August 1995 |volume=24 |issue=4 |pages=873–921 |doi=10.1137/S0097539792228228 |url=https://doi.org/10.1137/S0097539792228228 |language=en |issn=0097-5397|url-access=subscription }}</ref> given a Boolean formula written as an AND of ORs of ANDs of ... of possibly negated variables, with <math>i+1</math> layers of ANDs or ORs (and ''i'' alternations between AND and OR), can it be satisfied by setting exactly ''k'' variables to 1?
Many natural computational problems occupy the lower levels, ''W''[1] and ''W''[2].
|