Content deleted Content added
→Communication: typo |
Citation bot (talk | contribs) Altered bibcode. Add: bibcode, pmc, pmid, doi-access, authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Jay8g | #UCB_toolbar |
||
Line 125:
In May 2021, a Stanford University team reported a successful proof-of-concept test that enabled a quadraplegic participant to produce English sentences at about 86 characters per minute and 18 words per minute. The participant imagined moving his hand to write letters, and the system performed handwriting recognition on electrical signals detected in the motor cortex, utilizing [[Hidden Markov models]] and [[recurrent neural networks]].<ref>{{cite journal | vauthors = Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV | title = High-performance brain-to-text communication via handwriting | journal = Nature | volume = 593 | issue = 7858 | pages = 249–254 | date = May 2021 | pmid = 33981047 | pmc = 8163299 | doi = 10.1038/s41586-021-03506-2 | bibcode = 2021Natur.593..249W }}</ref><ref>{{cite book | vauthors = Willett FR |title=Brain-Computer Interface Research: A State-of-the-Art Summary 10|chapter=A High-Performance Handwriting BCI|date=2021 |pages=105–109| veditors = Guger C, Allison BZ, Gunduz A |series=SpringerBriefs in Electrical and Computer Engineering|place=Cham|publisher=Springer International Publishing|language=en|doi=10.1007/978-3-030-79287-9_11|isbn=978-3-030-79287-9 |s2cid=239736609}}</ref>
[[File:Photograph-by-mikeCaiChen.jpg|alt=Participant in a brain-computer interface is Getting connected to a computer|thumb|Participant in a brain-computer interface is getting connected to a computer ]]
Since researchers from [[University of California, San Francisco|UCSF]] initiated a brain-computer interface (BCI) study, numerous reports have been made. In 2021, they reported that a paralyzed and with [[Dysarthria|anarthria]] man was able to communicate fifteen words per minute using an implanted device that examined nerve cells controlling the muscles of the vocal tract.<ref>{{Cite journal |
In a review article, authors wondered whether human information transfer rates can surpass that of language with BCIs. Language research has reported that information transfer rates are relatively constant across many languages. This may reflect the brain's information processing limit. Alternatively, this limit may be intrinsic to language itself, as a modality for information transfer.<ref name=":5">{{cite journal | vauthors = Pandarinath C, Bensmaia SJ | title = The science and engineering behind sensitized brain-controlled bionic hands | journal = Physiological Reviews | date = September 2021 | volume = 102 | issue = 2 | pages = 551–604 | pmid = 34541898 | doi = 10.1152/physrev.00034.2020 | pmc = 8742729 | s2cid = 237574228 }}</ref>
Line 226:
In 2008 research developed in the Advanced Telecommunications Research (ATR) [[Computational Neuroscience]] Laboratories in [[Kyoto]], Japan, allowed researchers to reconstruct images from brain signals at a [[Display resolution|resolution]] of 10x10 [[pixels]].<ref>{{cite journal | vauthors = Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y, Tanabe HC, Sadato N, Kamitani Y | display-authors = 6 | title = Visual image reconstruction from human brain activity using a combination of multiscale local image decoders | journal = Neuron | volume = 60 | issue = 5 | pages = 915–929 | date = December 2008 | pmid = 19081384 | doi = 10.1016/j.neuron.2008.11.004 | s2cid = 17327816 | doi-access = free }}</ref>
A 2011 study reported second-by-second reconstruction of videos watched by the study's subjects, from fMRI data.<ref>{{cite journal |vauthors=Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL |date=October 2011 |title=Reconstructing visual experiences from brain activity evoked by natural movies |journal=Current Biology |volume=21 |issue=19 |pages=1641–1646 |doi=10.1016/j.cub.2011.08.031 |pmc=3326357 |pmid=21945275|bibcode=2011CBio...21.1641N }}</ref> This was achieved by creating a statistical model relating videos to brain activity. This model was then used to look up 100 one-second video segments, in a database of 18 million seconds of random [[YouTube]] videos, matching visual patterns to brain activity recorded when subjects watched a video. These 100 one-second video extracts were then combined into a mash-up image that resembled the video.<ref>{{cite magazine | url = http://blogs.scientificamerican.com/observations/2011/09/22/breakthrough-could-enable-others-to-watch-your-dreams-and-memories-video/ | title= Breakthrough Could Enable Others to Watch Your Dreams and Memories | last = Yam |first=Philip | date = 22 September 2011 | magazine = Scientific American | access-date = 25 September 2011}}</ref><ref>{{cite web | url = https://sites.google.com/site/gallantlabucb/publications/nishimoto-et-al-2011 | title = Reconstructing visual experiences from brain activity evoked by natural movies (Project page) | publisher = The Gallant Lab at [[UC Berkeley]] | access-date = 25 September 2011 |url-status=dead |archiveurl=https://web.archive.org/web/20110925024037/https://sites.google.com/site/gallantlabucb/publications/nishimoto-et-al-2011 |archivedate=2011-09-25}}</ref><ref>{{cite web | url= http://newscenter.berkeley.edu/2011/09/22/brain-movies/| title= Scientists use brain imaging to reveal the movies in our mind |last=Anwar |first=Yasmin | date= 22 September 2011 | publisher = [[UC Berkeley]] News Center| access-date = 25 September 2011}}</ref>
====BCI control strategies in neurogaming====
Line 255:
===Brain-to-brain communication===
In the 1960s a researcher after training used EEG to create [[Morse code]] using alpha waves.<ref name="Telepathy">{{cite news |last=Bland |first=Eric |date=13 October 2008 |title=Army Developing 'synthetic telepathy' |url=https://www.nbcnews.com/id/wbna27162401 |access-date=13 October 2008 |newspaper=Discovery News}}</ref> On 27 February 2013 [[Miguel Nicolelis]]'s group at [[Duke University]] and IINN-ELS connected the brains of two rats, allowing them to share information, in [[Miguel Nicolelis#Brain to brain|the first-ever direct brain-to-brain interface]].<ref name="srep01319">{{cite journal |vauthors=Pais-Vieira M, Lebedev M, Kunicki C, Wang J, Nicolelis MA |date=28 February 2013 |title=A brain-to-brain interface for real-time sharing of sensorimotor information |journal=Scientific Reports |volume=3 |pages=1319 |bibcode=2013NatSR...
Gerwin Schalk reported that ECoG signals can discriminate vowels and consonants embedded in spoken and imagined words, shedding light on the mechanisms associated with their production and could provide a basis for brain-based communication using imagined speech.<ref name="TelepathicCommVowel" /><ref name="TelepathicComm">{{cite news |last=Kennedy |first=Pagan |title=The Cyborg in Us All |url=https://www.nytimes.com/2011/09/18/magazine/the-cyborg-in-us-all.html |work=[[The New York Times]] |date=18 September 2011 |access-date=28 January 2012 }}</ref>
|