Plant development: Difference between revisions

Content deleted Content added
m Added wiki link to cotyledons
m added wiki link to hypocotyls
Line 23:
The ability to regenerate plants successfully depends on selecting the right explant, which varies among species and plant varieties. In direct organogenesis, explants sourced from meristematic tissues, such as shoot tips, lateral buds, leaves, petioles, roots, and floral structures, are often preferred due to their ability to rapidly develop into new organs. These tissues have high survival rates, fast growth, and strong regenerative potential in vitro. Meristems, shoot tips, axillary buds, immature leaves, and embryos are particularly effective in promoting regeneration across a wide range of plant species.
 
Additionally, mature plant parts, including leaves, stems, roots, petioles, and flower segments, can also serve as viable explants for organ formation under suitable conditions. Plant regeneration occurs through the formation of callus, an undifferentiated mass of cells that later gives rise to new organs. Callus formation can be induced from various explants, such as [[Cotyledon|cotyledons]], [[Hypocotyl|hypocotyls]], stems, leaves, shoot apices, roots, inflorescences, and floral structures, when cultured under controlled conditions.
 
Generally, explants containing actively dividing cells are more effective for callus initiation, as they have a higher capacity for cellular reprogramming. Immature tissues tend to be more adaptable for regeneration compared to mature tissues due to their increased developmental plasticity. The size and shape of the explant also influence the success of culture establishment, as larger or more structurally favorable explants may enhance the chances of survival and growth. Callus development is primarily triggered by wounding and the presence of plant hormones, which may be naturally present in the tissue or supplemented in the growth medium to stimulate cellular activity and organ formation.{{cn|date=June 2025}}