Content deleted Content added
m link arxiv copy |
→Definition as trigonometry: the Jacobi ellipse: Altered punctuation and some equation positions. |
||
Line 117:
[[File:Jacobi Elliptic Functions (on Jacobi Ellipse).svg|right|thumb|upright=1.5|Plot of the Jacobi ellipse (''x''<sup>2</sup> + ''y''<sup>2</sup>/''b''<sup>2</sup> = 1, ''b'' real) and the twelve Jacobi elliptic functions ''pq''(''u'',''m'') for particular values of angle ''φ'' and parameter ''b''. The solid curve is the ellipse, with ''m'' = 1 − 1/''b''<sup>2</sup> and ''u'' = ''F''(''φ'',''m'') where ''F''(⋅,⋅) is the [[elliptic integral]] of the first kind (with parameter <math>m=k^2</math>). The dotted curve is the unit circle. Tangent lines from the circle and ellipse at ''x'' = cd crossing the ''x''-axis at dc are shown in light grey.]]
<math> \cos \varphi, \, \sin \varphi </math> are defined on the unit circle
:<math>
\begin{align}
& x^2 + \frac{y^2}{b^2} = 1, \quad m
&
\end{align}
</math>
Then <math>0 \le m < 1</math> and
:<math> r(
For each angle <math>\varphi</math> the parameter
Line 138 ⟶ 137:
Let <math>P=(x,y)=(r \cos\varphi, r\sin\varphi)</math> be a point on the ellipse, and let <math>P'=(x',y')=(\cos\varphi,\sin\varphi)</math> be the point where the unit circle intersects the line between <math>P</math> and the origin <math>O</math>.
Then the familiar relations from the unit circle
:<math> x' = \cos \varphi, \quad y' = \sin \varphi</math>
read for the ellipse
:<math>x' = \operatorname{cn}(u,m),\quad y' = \operatorname{sn}(u,m).</math>
So the projections of the intersection point <math>P'</math> of the line <math>OP</math> with the unit circle on the ''x''- and ''y''-axes are simply <math>\operatorname{cn}(u,m)</math> and <math>\operatorname{sn}(u,m)</math>. These projections may be interpreted as 'definition as trigonometry'. In short
:<math> \operatorname{cn}(u,m) = \frac{x}{r(\varphi,m)}, \quad \operatorname{sn}(u,m) = \frac{y}{r(\varphi,m)}, \quad \operatorname{dn}(u,m) = \frac{1}{r(\varphi,m)}. </math>
For the <math>x</math> and <math>y</math>
<math>u</math> and parameter <math>m</math> we get,
:<math>r(\varphi,m) = \frac 1 {\operatorname{dn}(u,m)} </math>
into
:<math> x = \frac{\operatorname{cn}(u,m)} {\operatorname{dn}(u,m)},\quad y = \frac{\operatorname{sn}(u,m)} {\operatorname{dn}(u,m)}.</math>
The latter relations for the ''x''- and ''y''-coordinates of points on the unit ellipse may be considered as generalization of the relations <math> x = \cos \varphi, y = \sin \varphi</math> for the coordinates of points on the unit circle.▼
▲The latter relations for the ''x''- and ''y''-coordinates of points on the unit ellipse may be considered as generalization of the relations <math> x = \cos \varphi
The following table summarizes the expressions for all Jacobi elliptic functions pq(u,m) in the variables (''x'',''y'',''r'') and (''φ'',dn) with <math display="inline">r = \sqrt{x^2+y^2}</math>▼
▲The following table summarizes the expressions for all Jacobi elliptic functions pq(u,m) in the variables (''x'',''y'',''r'') and (''φ'',dn) with <math display="inline">r = \sqrt{x^2+y^2}</math>.
{| class="wikitable" style="text-align:center"
|+ Jacobi elliptic functions pq[''u'',''m''] as functions of {''x'',''y'',''r''} and {''φ'',dn}
|