Boolean Pythagorean triples problem: Difference between revisions

Content deleted Content added
Reverting to the version before the "AI" edit
Added the solution to the lead, so that the reader immediately gets that the answer is "No, from 7825 and up"
 
Line 1:
{{short description|Can one split the integers into two sets such that every Pythagorean triple spans both?}}
The '''Boolean Pythagorean triples problem''' is a problem from [[Ramsey theory]] about whether the [[natural number|positive integers]] can be colored red and blue so that no [[Pythagorean triple]]s consist of all red or all blue members. The Boolean Pythagorean triples problem was solved by [[Marijn Heule]], Oliver Kullmann and [[Victor W. Marek]] in May 2016 through a [[computer-assisted proof]], which showed that such a coloring is only possible up to the number 7824.<ref name="nature">{{Cite journal|last=Lamb|first=Evelyn|date=26 May 2016|title=Two-hundred-terabyte maths proof is largest ever|journal=Nature|doi=10.1038/nature.2016.19990|volume=534|issue=7605 |pages=17–18|pmid=27251254|bibcode=2016Natur.534...17L|doi-access=free}}</ref>
 
==Statement==