Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
[[Network packet]] steering of incoming traffic for [[Multi-core_processor|multi-core architectures]] is needed in modern network computing environment, especially in [[Data_center|data centers]], where the high bandwidth and heavy loads would easily congestion a single core's [[Queueing theory|queue]].
[[File:Simple NIC and cores architecture.png|thumb|upright=1.7|Simple graph showing the path receiving packets need to travel to reach the cores' queues]]
For this reason many techniques, both in hardware and in software, are leveraged in order to distribute the incoming load of packets across the cores of the processor.<ref name="General intro">{{Citation |last=Madden |first=Michael M. |title=Challenges Using the Linux Network Stack for Real-Time Communication |date=2019-01-06 |work=AIAA Scitech 2019 Forum |url=https://arc.aiaa.org/doi/10.2514/6.2019-0503 |access-date=2025-07-10 |series=AIAA SciTech Forum |publisher=American Institute of Aeronautics and Astronautics |doi=10.2514/6.2019-0503 |pages=9-11}}</ref><ref>{{Cite web |last=Herbert |first=Tom |date=2025-02-24 |title=The alphabet soup of receive packet steering: RSS, RPS, RFS, and aRFS |url=https://medium.com/@tom_84912/the-alphabet-soup-of-receive-packet-steering-rss-rps-rfs-and-arfs-c84347156d68 |access-date=2025-07-10 |website=Medium |language=en}}</ref><br>
|