Content deleted Content added
Revert to last known working version Tag: Reverted |
|||
Line 35:
The stored exponents 0000<sub>16</sub> and 7FFF<sub>16</sub> are interpreted specially.
{| class="wikitable" style="text-align: center;"
|-
! Exponent !! Significand zero !! Significand non-zero !! Equation
|-
Line 50 ⟶ 51:
These examples are given in bit ''representation'', in [[hexadecimal]], of the floating-point value. This includes the sign, (biased) exponent, and significand.
0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub> = 2<sup>−16382</sup> × 2<sup>−112</sup> = 2<sup>−16494</sup>▼
≈ 6.4751751194380251109244389582276465525 × 10<sup>−4966</sup>▼
(smallest positive subnormal number)▼
▲ 0000 0000 0000 0000 0000 0000 0000 0001<sub>16</sub> = 2<sup>−16382</sup> × 2<sup>−112</sup> = 2<sup>−16494</sup>
▲ ≈ 6.4751751194380251109244389582276465525 × 10<sup>−4966</sup>
0000 ffff ffff ffff ffff ffff ffff ffff<sub>16</sub> = 2<sup>−16382</sup> × (1 − 2<sup>−112</sup>)▼
(largest subnormal number)▼
▲ 0000 ffff ffff ffff ffff ffff ffff ffff<sub>16</sub> = 2<sup>−16382</sup> × (1 − 2<sup>−112</sup>)
0001 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = 2<sup>−16382</sup>▼
▲0001 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = 2<sup>−16382</sup>
(smallest positive normal number)▼
7ffe ffff ffff ffff ffff ffff ffff ffff<sub>16</sub> = 2<sup>16383</sup> × (2 − 2<sup>−112</sup>)▼
▲7ffe ffff ffff ffff ffff ffff ffff ffff<sub>16</sub> = 2<sup>16383</sup> × (2 − 2<sup>−112</sup>)
▲ (largest normal number)
3ffe ffff ffff ffff ffff ffff ffff ffff<sub>16</sub> = 1 − 2<sup>−113</sup>▼
▲3ffe ffff ffff ffff ffff ffff ffff ffff<sub>16</sub> = 1 − 2<sup>−113</sup>
▲ (largest number less than one)
3fff 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = 1 (one)▼
▲3fff 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = 1 (one)
3fff 0000 0000 0000 0000 0000 0000 0001<sub>16</sub> = 1 + 2<sup>−112</sup>▼
≈ 1.0000000000000000000000000000000001926
▲3fff 0000 0000 0000 0000 0000 0000 0001<sub>16</sub> = 1 + 2<sup>−112</sup>
▲ (smallest number larger than one)
▲c000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = −2
▲8000 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = −0
▲ffff 0000 0000 0000 0000 0000 0000 0000<sub>16</sub> = −infinity
4000 921f b544 42d1 8469 898c c517 01b8<sub>16</sub> ≈ 3.1415926535897932384626433832795027975▼
▲4000 921f b544 42d1 8469 898c c517 01b8<sub>16</sub> ≈ 3.1415926535897932384626433832795027975
(closest approximation to π)▼
3ffd 5555 5555 5555 5555 5555 5555 5555<sub>16</sub> ≈ 0.3333333333333333333333333333333333173▼
▲3ffd 5555 5555 5555 5555 5555 5555 5555<sub>16</sub> ≈ 0.3333333333333333333333333333333333173
▲ (closest approximation to 1/3)
By default, 1/3 rounds down like [[double precision]], because of the odd number of bits in the significand. Thus, the bits beyond the rounding point are <code>0101...</code> which is less than 1/2 of a [[unit in the last place]].
|