Content deleted Content added
Added new QMM-based quantum error correction, extended imprint retrieval experiments |
Fixed cite errors. |
||
Line 16:
}}
Originally proposed in 2024, the '''Quantum Memory Matrix''' ('''QMM''') is a discretized, Planck-scale framework that models space-time as a four-dimensional lattice of finite-dimensional Hilbert
[[File:QMM_space_time_cells.png|thumb|upright=1.20|Planck-scale discretization envisioned by QMM.<ref name="Neukart2024" />]]
==Historical background==
* '''2024 (December).''' Publication of
* '''2024 (December).''' An IBM Quantum experiment demonstrates reversible imprinting and retrieval.<ref name="Arxiv2502">{{cite arXiv |last1=Neukart |first1=Florian |last2=Marx |first2=Eike |last3=Vinokur |first3=Valerii |eprint=2502.15766 |title=Reversible Imprinting and Retrieval of Quantum Information: Experimental Verification of the QMM Hypothesis |date=2025 |class=physics.gen-ph }}</ref>
* '''2025 (February).''' Two companion preprints extend QMM to electromagnetism<ref>{{cite journal |last=Neukart |first=F. |title=Planck-Scale Electromagnetism in the Quantum Memory Matrix: A Discrete Approach to Unitarity |journal=Preprints |year=2025 |number=2025030551 |doi=10.20944/preprints202503.0551.v1 |doi-access=free |url=https://www.preprints.org/manuscript/202503.0551/v1}}</ref><ref>{{cite arXiv |last1=Neukart |first1=Florian |last2=Marx |first2=Eike |last3=Vinokur |first3=Valerii |eprint=2502.15766v2 |title=Integrating Electromagnetic Interactions into the QMM Framework |date=2025 |class=physics.gen-ph }}</ref> and to the strong and weak sectors.<ref name="Neukart2025SW">{{cite journal |last=Neukart |first=F. |title=Extending the Quantum Memory Matrix Framework to the Strong and Weak Interactions |journal=Entropy |volume=27 |issue=2 |pages=153 |year=2025 |doi=10.3390/e27020153 |doi-access=free }}</ref>
Line 74:
==Experimental verification==
A dedicated hardware study on IBM’s 127-qubit **ibm_kyiv** and **ibm_brisbane** devices implemented five imprint–retrieval circuits that scale from a minimal three-qubit cell to a dual five-qubit cycle.<ref>{{cite arxiv |
* The baseline three-qubit cycle reached a retrieval fidelity of <math>F_{\text{retr}} = 0.732 \pm 0.012</math>.
* Adding a second, independent memory cell preserved fidelity within 3 % (five-qubit dual cycle, <math>F = 0.704 \pm 0.014</math>).
|