Analytic function: Difference between revisions

Content deleted Content added
Alternative characterizations: Remove lineskip for clarity
Citation bot (talk | contribs)
Added authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine
 
Line 24:
A function <math>f</math> defined on some subset of the real line is said to be real analytic at a point <math>x</math> if there is a neighborhood <math>D</math> of <math>x</math> on which <math>f</math> is real analytic.
 
The definition of a ''complex analytic function'' is obtained by replacing, in the definitions above, "real" with "complex" and "real line" with "complex plane". A function is complex analytic if and only if it is [[Holomorphic function|holomorphic]] i.e. it is complex differentiable. For this reason the terms "holomorphic" and "analytic" are often used interchangeably for such functions.<ref>{{cite book |quote=A function ''f'' of the complex variable ''z'' is ''analytic'' at point ''z''<sub>0</sub> if its derivative exists not only at ''z'' but at each point ''z'' in some neighborhood of ''z''<sub>0</sub>. It is analytic in a region ''R'' if it is analytic at every point in ''R''. The term ''holomorphic'' is also used in the literature to denote analyticity |lastlast1=Churchill |last2=Brown |last3=Verhey |title=Complex Variables and Applications |publisher=McGraw-Hill |year=1948 |isbn=0-07-010855-2 |page=[https://archive.org/details/complexvariable00chur/page/46 46] |url-access=registration |url=https://archive.org/details/complexvariable00chur/page/46 }}</ref>
 
In complex analysis, a function is called analytic in an open set "U" if it is (complex) differentiable at each point in "U" and its complex derivative is continuous on "U".<ref>{{Cite book |last= Gamelin |first= Theodore W. |title=Complex Analysis |publisher=Springer |year=2004|isbn= 9788181281142}}</ref>
Line 44:
* [[Piecewise|Piecewise defined]] functions (functions given by different formulae in different regions) are typically not analytic where the pieces meet.
* The [[complex conjugate]] function ''z''&nbsp;&rarr; ''z''* is not complex analytic, although its restriction to the real line is the identity function and therefore real analytic, and it is real analytic as a function from <math>\mathbb{R}^{2}</math> to <math>\mathbb{R}^{2}</math>.
* Other [[non-analytic smooth function]]s, and in particular any smooth function <math>f</math> with compact support, i.e. <math>f \in \mathcal{C}^\infty_0(\R^n)</math>, cannot be analytic on <math>\R^n</math>.<ref>{{Cite book|last=Strichartz, Robert S.|url=https://www.worldcat.org/oclc/28890674|title=A guide to distribution theory and Fourier transforms|date=1994|publisher=CRC Press|isbn=0-8493-8273-4|___location=Boca Raton|oclc=28890674}}</ref>
 
==Alternative characterizations==