Content deleted Content added
HenryHiggs (talk | contribs) m Clarified language for combinatorics of triplets |
Joannamasel (talk | contribs) →Origin: Opens with a strong reliance on RNA world hypothesis, which is not NPOV. Adding alternatives to first paragraph. |
||
Line 183:
==Origin==
The genetic code is a key part of the [[origin of life|history of life]]
A hypothetical randomly evolved genetic code further motivates a biochemical or evolutionary model for its origin. If amino acids were randomly assigned to triplet codons, there would be 1.5 × 10<sup>84</sup> possible genetic codes.<ref name="isbn0-674-05075-4">{{cite book|first=Michael |last=Yarus|author-link=Michael Yarus|title=Life from an RNA World: The Ancestor Within|url={{google books |plainurl=y |id=-YLBMmJE1WwC}}|year=2010|publisher=Harvard University Press|isbn=978-0-674-05075-4}}</ref>{{rp|[{{google books |plainurl=y |id=-YLBMmJE1WwC|page=163}} 163]}} This number is found by calculating the number of ways that 21 items (20 amino acids plus one stop) can be placed in 64 bins, wherein each item is used at least once.<ref>{{Cite web|url=http://community.wolfram.com/groups/-/m/t/319970|title=Mathematica function for # possible arrangements of items in bins? – Online Technical Discussion Groups—Wolfram Community|website=community.wolfram.com|language=en-US|access-date=2017-02-03}}</ref> However, the distribution of codon assignments in the genetic code is nonrandom.<ref name="pmid9732450">{{cite journal | vauthors = Freeland SJ, Hurst LD | s2cid = 20130470 | title = The genetic code is one in a million | journal = Journal of Molecular Evolution | volume = 47 | issue = 3 | pages = 238–48 | date = Sep 1998 | pmid = 9732450 | doi = 10.1007/PL00006381 | bibcode = 1998JMolE..47..238F }}</ref> In particular, the genetic code clusters certain amino acid assignments.
|