Content deleted Content added
review: simplify link. format ref. |
Citation bot (talk | contribs) Removed URL that duplicated identifier. | Use this bot. Report bugs. | #UCB_CommandLine |
||
Line 43:
:<math>\ k^\prime = k \cdot(\max(i) - \min(i)) + \min(i)= k \cdot(L- 1)</math><ref>{{web archive |url=https://web.archive.org/web/20200601000000*/https://www.math.uci.edu/icamp/courses/math77c/demos/hist_eq.pdf |title=University of California, Irvine Math 77C - Histogram Equalization}}</ref><!--[[User:Kvng/RTH]]-->
<math>k </math> is a real value while<math>\ k^\prime </math> has to be an integer. An intuitive and popular method<ref>{{Cite book|last=Gonzalez|first=Rafael C.
:<math>\ k^\prime = \operatorname{round} (k \cdot(L- 1))</math>.
However, detailed analysis results in slightly different formulation. The mapped value <math>k^\prime </math> should be 0 for the range of <math>0<k \leq1/L</math>. And <math>k^\prime =1</math> for <math>1/L < k \leq 2/L</math>, <math>k^\prime = 2 </math> for <math>2/L < k \leq 3/L</math>, ...., and finally <math>k^\prime =L-1</math> for <math>(L-1)/L < k \leq 1</math>. Then the quantization formula from <math>k</math> to <math>k^\prime </math> should be
|