Fibonacci sequence: Difference between revisions

Content deleted Content added
move large math to a block, and use "see below" template
Symbolic method: rm section; see talk
Line 359:
 
[[File:Fibonacci Squares.svg|frameless|260x260px]]
 
=== Symbolic method ===
The sequence <math>(F_n)_{n\in\mathbb N}</math> is also considered using the [[symbolic method (combinatorics)|symbolic method]].<ref>{{citation |last1=Flajolet |first1=Philippe |last2=Sedgewick |first2=Robert |title=Analytic Combinatorics|title-link= Analytic Combinatorics |date=2009 |publisher=Cambridge University Press |isbn=978-0521898065 |page=42}}</ref> More precisely, this sequence corresponds to a [[specifiable combinatorial class]]. The specification of this sequence is <math>\operatorname{Seq}(\mathcal{Z+Z^2})</math>. Indeed, as stated above, the <math>n</math>-th Fibonacci number equals the number of [[Composition (combinatorics)|combinatorial compositions]] (ordered [[integer partition|partitions]]) of <math>n-1</math> using terms 1 and 2.
 
It follows that the [[ordinary generating function]] of the Fibonacci sequence is the [[rational function]]
: <math>\sum_{i=0}^\infty F_iz^i = \frac{z}{1-z-z^2}.</math>
{{See below|{{slink||Generating function}}.}}
 
=== Induction proofs ===