Parallel coordinates: Difference between revisions

Content deleted Content added
Avarai (talk | contribs)
m Software: Article added
Tags: Mobile edit Mobile app edit Android app edit App section source
Avarai (talk | contribs)
m Higher dimensions: Fixed typo
Tags: Mobile edit Mobile app edit Android app edit App select source
 
Line 23:
 
==Higher dimensions==
On the plane with an XY Cartesian coordinate system, adding more [[dimensions]] in parallel coordinates (often abbreviated ||-coords, PCP, or PC) involves adding more axes. The value of parallel coordinates is that certain geometrical properties in high dimensions transform into easily seen 2D patterns. For example, a set of points on a line in ''n''-space transforms to a set of [[polyline]]s in parallel coordinates all intersecting at ''n''&nbsp;&minus;&nbsp;1 points. For ''n'' = 2 this yields a point-line duality pointing out why the mathematical foundations of parallel coordinates are developed in the [[Projective space|projective]] rather than [[Euclidian space|euclidean]] space. A pair of lines intersects at a unique point which has two coordinates and, therefore, can correspond to a unique line which is also specified by two parameters (or two points). ByIn contrast, more than two points are required to specify a curve and also a pair of curves may not have a unique intersection. Hence by using curves in parallel coordinates instead of lines, the point line duality is lost together with all the other properties of projective geometry, and the known nice higher-dimensional patterns corresponding to (hyper)planes, curves, several smooth (hyper)surfaces, proximities, convexity and recently non-orientability.<ref name="pc2">{{cite book |first=Alfred |last=Inselberg |title=Parallel Coordinates: VISUAL Multidimensional Geometry and its Applications |publisher=Springer |year=2009 |isbn=978-0387215075 }}</ref> The goal is to map n-dimensional relations into 2D patterns. Hence, parallel coordinates is not a point-to-point mapping but rather a ''n''D subset to 2D subset mapping, there is no loss of information. Note: even a point in nD is not mapped into a point in 2D, but to a polygonal line—a subset of 2D.
 
==Statistical considerations==