Content deleted Content added
Add section for nearest neighbor without fixed dimensionality |
The sentence does not need to be wrapped into parenthesis |
||
Line 1:
{{Short description|Algorithmic technique using hashing}}
In [[computer science]], '''locality-sensitive hashing''' ('''LSH''') is a [[fuzzy hashing]] technique that hashes similar input items into the same "buckets" with high probability.<ref name="MOMD">{{cite web|url=http://infolab.stanford.edu/~ullman/mmds.html|title=Mining of Massive Datasets, Ch. 3.|last1=Rajaraman|first1=A.|last2=Ullman|first2=J.|author2-link=Jeffrey Ullman|year=2010}}</ref>
Hashing-based approximate [[nearest-neighbor search]] algorithms generally use one of two main categories of hashing methods: either data-independent methods, such as locality-sensitive hashing (LSH); or data-dependent methods, such as locality-preserving hashing (LPH).<ref>{{cite conference |last1=Zhao |first1=Kang |last2=Lu |first2=Hongtao |last3=Mei |first3=Jincheng |title=Locality Preserving Hashing |conference=AAAI Conference on Artificial Intelligence | volume=28 | year=2014 |url=https://ojs.aaai.org/index.php/AAAI/article/view/9133/8992 |pages=2874–2880}}</ref><ref>{{cite book |last1=Tsai |first1=Yi-Hsuan |last2=Yang |first2=Ming-Hsuan |title=2014 IEEE International Conference on Image Processing (ICIP) |chapter=Locality preserving hashing |date=October 2014 |pages=2988–2992 |doi=10.1109/ICIP.2014.7025604 |isbn=978-1-4799-5751-4 |s2cid=8024458 |issn=1522-4880}}</ref>
|