Discrete dipole approximation: Difference between revisions

Content deleted Content added
split this article and moved DDA code to separate in anticipation for more theoretical description which will make it too long
No edit summary
Line 59:
 
 
=== Polarizability ===
{{Main|Polarizability}}
 
In the discrete dipole approximation, the electromagnetic response of a target is modeled by replacing the continuous material with a finite array of point dipoles. Each dipole represents a small volume of the material and acts as a polarizable unit that interacts with both the incident field and the fields radiated by all other dipoles. The key parameter that describes how each dipole responds to the local electric field is its polarizability <math>\alpha_j</math>. For a homogeneous material, the polarizability of a dipole is determined by the material’s complex dielectric function <math>\varepsilon(\lambda)</math>, which depends on the wavelength <math>\lambda</math> of light in vacuum. The dielectric function is related to the complex refractive index <math>n = n' + i n''</math> through <math>\varepsilon = n^2</math>. The goal in DDA is to assign to each dipole a polarizability <math>\alpha_j</math> such that the array of dipoles reproduces, as accurately as possible, the scattering and absorption behavior of the original continuous medium. For isotropic materials, a common starting point is the [[Clausius–Mossotti relation|Clausius–Mossotti relation]], which connects the polarizability to the dielectric function:
 
:<math>
\alpha_j = 3V_j \frac{\varepsilon - 1}{\varepsilon + 2},
</math>
 
where <math>V_j</math> is the volume associated with dipole ''j''. This formula assumes that each dipole occupies a spherical volume embedded in an otherwise uniform dielectric medium. In most implementations of DDA the formulation is expressed in Gaussian units (CGS). In these units, the polarizability <math>\alpha_j</math> has dimensions of volume (cm³). In SI units, additional factors involving <math>4\pi\epsilon_0</math> appear in the expressions for <math>\alpha_j</math> and the field interactions.
 
To improve the accuracy of the method, particularly for targets with high refractive indices or for fine discretizations, various corrections to <math>\alpha_j</math> are applied. These include: the lattice dispersion relation (LDR) polarizability (Draine & Goodman, 1993), which adjusts <math>\alpha_j</math> to ensure that the dispersion relation of an infinite lattice of dipoles matches that of the continuous material; the radiative reaction (RR) correction, which compensates for the fact that each dipole radiates energy and is influenced by its own radiation field.
 
==Fast Fourier Transform for fast convolution calculations==
Line 92 ⟶ 104:
 
 
<ref name=chaumet2003>{{cite journal |last1=Chaumet |first1=Patrick C. |last2=Rahmani |first2=Adel |last3=Bryant |first3=Garnett W. |title=Generalization of the coupled dipole method to periodic structures |journal=Phys. Rev. B |volume=67 |issue=16 |pages=165404 |date=2003-04-02 |doi=10.1103/PhysRevB.67.165404 |arxiv=physics/0305051 |bibcode=2003PhRvB..67p5404C}}</ref>
<ref name=chaumet2003>{{cite journal
|last1=Chaumet | first1=Patrick C. | last2=Rahmani | first2=Adel | last3=Bryant | first3=Garnett W.
|title=Generalization of the coupled dipole method to periodic structures
|journal=Phys. Rev. B
|publisher=American Physical Society (APS)
|volume=67
|issue=16
|date=2003-04-02
|doi=10.1103/physrevb.67.165404
|page=165404
|arxiv=physics/0305051
|bibcode=2003PhRvB..67p5404C
|s2cid=26726283
}}</ref>
 
 
<ref name=draine1994> {{cite journal
|doi=10.1364/JOSAA.11.001491
|author1=Draine, B.T. |author2=P.J. Flatau
|title=Discrete dipole approximation for scattering calculations
|journal=J. Opt. Soc. Am. A
|volume=11
|pages=1491–1499
|year=1994
|bibcode = 1994JOSAA..11.1491D
|issue=4
}}</ref>
 
<ref name=draine2008> {{cite journal
|author1=B. T. Draine |author2=P. J. Flatau
|title=The discrete dipole approximation for periodic targets: theory and tests
|volume=25
|issue=11
|pages=2693–3303 |year=2008
|journal=J. Opt. Soc. Am. A
|arxiv = 0809.0338
|bibcode = 2008JOSAA..25.2693D
|doi = 10.1364/JOSAA.25.002693
|pmid=18978846
|s2cid=15747060
}}</ref>
 
<ref name=devoe1964>{{cite journal
|last=DeVoe | first=Howard
|title=Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction
|journal=J. Chem. Phys.
|publisher=AIP Publishing
|volume=41
|issue=2
|date=1964-07-15
|doi=10.1063/1.1725879
|pages=393–400
|bibcode=1964JChPh..41..393D
}}</ref>
 
<ref name=edalatpour2015>{{Cite journal
|doi = 10.1103/PhysRevE.91.063307
|pmid = 26172822
|volume = 91
|issue = 6
|pages = 063307
|author1 = S. Edalatpour |author2 = M. Čuma |author3 = T. Trueax |author4 = R. Backman |author5 = M. Francoeur
|title = Convergence analysis of the thermal discrete dipole approximation
|journal = Phys. Rev. E
|year = 2015
|bibcode = 2015PhRvE..91f3307E
|arxiv = 1502.02186
|s2cid = 21556373
}}</ref>
 
 
<ref name=lorentz1909>H. A. Lorentz, Theory of Electrons (Teubner, Leipzig, 1909)</ref>
 
 
<ref name=draine1994>{{cite journal |last1=Draine |first1=B. T. |last2=Flatau |first2=P. J. |title=Discrete dipole approximation for scattering calculations |journal=J. Opt. Soc. Am. A |volume=11 |issue=4 |pages=1491–1499 |year=1994 |doi=10.1364/JOSAA.11.001491 |bibcode=1994JOSAA..11.1491D}}</ref>
<ref name=mcdonald2009>{{Cite journal
|doi = 10.1177/1094342008097914
|volume = 23
|issue = 1
|pages = 42–61
|author1=J. McDonald |author2=A. Golden |author3=G. Jennings
|title = OpenDDA: a novel high-performance computational framework for the discrete dipole approximation
|journal = Int. J. High Perf. Comp. Appl.
|year = 2009
|arxiv = 0908.0863
|bibcode = 2009arXiv0908.0863M
|s2cid = 10285783
}}</ref>
 
<ref name=draine2008>{{cite journal |last1=Draine |first1=B. T. |last2=Flatau |first2=P. J. |title=The discrete dipole approximation for periodic targets: theory and tests |journal=J. Opt. Soc. Am. A |volume=25 |issue=11 |pages=2693–2703 |year=2008 |doi=10.1364/JOSAA.25.002693 |arxiv=0809.0338 |bibcode=2008JOSAA..25.2693D}}</ref>
 
<ref name=devoe1964>{{cite journal |last=DeVoe |first=Howard |title=Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction |journal=J. Chem. Phys. |volume=41 |issue=2 |pages=393–400 |date=1964-07-15 |doi=10.1063/1.1725879 |bibcode=1964JChPh..41..393D}}</ref>
 
<ref name=purcell1973> {{cite journal
|author1=E. M. Purcell |author2=C. R. Pennypacker
|title=Scattering and absorption of light by nonspherical dielectric grains
|journal=Astrophys. J.
|volume=186
|pages=705
| doi = 10.1086/152538
|year=1973
|bibcode = 1973ApJ...186..705P
}}</ref>
 
<ref name=edalatpour2015>{{cite journal |last1=Edalatpour |first1=S. |last2=Čuma |first2=M. |last3=Trueax |first3=T. |last4=Backman |first4=R. |last5=Francoeur |first5=M. |title=Convergence analysis of the thermal discrete dipole approximation |journal=Phys. Rev. E |volume=91 |issue=6 |pages=063307 |year=2015 |doi=10.1103/PhysRevE.91.063307 |arxiv=1502.02186 |bibcode=2015PhRvE..91f3307E}}</ref>
<ref name=penttila2007>{{cite journal
| last1=Penttilä | first1=Antti | last2=Zubko | first2=Evgenij | last3=Lumme | first3=Kari | last4=Muinonen | first4=Karri | last5=Yurkin | first5=Maxim A. | last6=Draine | first6=Bruce | last7=Rahola | first7=Jussi | last8=Hoekstra | first8=Alfons G. | last9=Shkuratov | first9=Yuri |display-authors=5
|title=Comparison between discrete dipole implementations and exact techniques
|journal=J. Quant. Spectrosc. Radiat. Transfer
|publisher=Elsevier BV
|volume=106
|issue=1–3
|year=2007
|doi=10.1016/j.jqsrt.2007.01.026
|pages=417–436
|url = https://scattering.ru/papers/Penttila%20et%20al.%20-%202007%20-%20Comparison%20between%20discrete%20dipole%20implementations.pdf
|bibcode=2007JQSRT.106..417P
}}</ref>
 
<ref name=lorentz1909>H. A. Lorentz, ''Theory of Electrons'', Teubner, Leipzig, 1909.</ref>
<ref name=schmehl1997>{{cite journal
|last1=Schmehl | first1=Roland | last2=Nebeker | first2=Brent M. | last3=Hirleman | first3=E. Dan
|title=Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique
|journal=J. Opt. Soc. Am. A
| publisher=The Optical Society
| volume=14
| issue=11
| date=1997-11-01
| doi=10.1364/josaa.14.003026
| pages=3026–3036
| bibcode=1997JOSAA..14.3026S
}}</ref>
 
<ref name=mcdonald2009>{{cite journal |last1=McDonald |first1=J. |last2=Golden |first2=A. |last3=Jennings |first3=G. |title=OpenDDA: a high-performance computational framework for the discrete dipole approximation |journal=Int. J. High Perform. Comput. Appl. |volume=23 |issue=1 |pages=42–61 |year=2009 |doi=10.1177/1094342008097914 |arxiv=0908.0863 |bibcode=2009arXiv0908.0863M}}</ref>
 
<ref name=purcell1973>{{cite journal |last1=Purcell |first1=E. M. |last2=Pennypacker |first2=C. R. |title=Scattering and absorption of light by nonspherical dielectric grains |journal=Astrophys. J. |volume=186 |pages=705–714 |year=1973 |doi=10.1086/152538 |bibcode=1973ApJ...186..705P}}</ref>
 
<ref name=penttila2007>{{cite journal |last1=Penttilä |first1=A. |last2=Zubko |first2=E. |last3=Lumme |first3=K. |last4=Muinonen |first4=K. |last5=Yurkin |first5=M. A. |title=Comparison between discrete dipole implementations and exact techniques |journal=J. Quant. Spectrosc. Radiat. Transfer |volume=106 |issue=1–3 |pages=417–436 |year=2007 |doi=10.1016/j.jqsrt.2007.01.026 |url=https://scattering.ru/papers/Penttila%20et%20al.%20-%202007%20-%20Comparison%20between%20discrete%20dipole%20implementations.pdf |bibcode=2007JQSRT.106..417P}}</ref>
<ref name=singham1986>{{cite journal
|last1=Singham | first1=Shermila B. | last2=Salzman | first2=Gary C.
|title=Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation
|journal=J. Chem. Phys.
|publisher=AIP Publishing
|volume=84
|issue=5
|year=1986
|doi=10.1063/1.450338
|pages=2658–2667
|bibcode=1986JChPh..84.2658S
}}</ref>
 
<ref name=schmehl1997>{{cite journal |last1=Schmehl |first1=R. |last2=Nebeker |first2=B. M. |last3=Hirleman |first3=E. D. |title=Discrete-dipole approximation for scattering by features on surfaces using FFT techniques |journal=J. Opt. Soc. Am. A |volume=14 |issue=11 |pages=3026–3036 |date=1997-11-01 |doi=10.1364/JOSAA.14.003026 |bibcode=1997JOSAA..14.3026S}}</ref>
<ref name=singham1987>{{cite journal
|last1=Singham | first1=Shermila Brito | last2=Bohren | first2=Craig F.
|title=Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method
|journal=Opt. Lett.
|publisher=The Optical Society
|volume=12
|issue=1
|date=1987-01-01
|pages=10–12
|doi=10.1364/ol.12.000010
|pmid=19738776
|bibcode=1987OptL...12...10S
}}</ref>
 
<ref name=singham1986>{{cite journal |last1=Singham |first1=S. B. |last2=Salzman |first2=G. C. |title=Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation |journal=J. Chem. Phys. |volume=84 |issue=5 |pages=2658–2667 |year=1986 |doi=10.1063/1.450338 |bibcode=1986JChPh..84.2658S}}</ref>
<ref name=smunev2015>{{Cite journal
|doi = 10.1016/j.jqsrt.2015.01.019
|volume = 156
|pages = 67–79
|author1 = D. A. Smunev| author2 = P. C. Chaumet| author3 = M. A. Yurkin
|title = Rectangular dipoles in the discrete dipole approximation
|journal = J. Quant. Spectrosc. Radiat. Transfer
|date = 2015
|url = https://scattering.ru/papers/Smunev%20et%20al.%20-%202015%20-%20Rectangular%20dipoles%20in%20the%20discrete%20dipole%20approxi.pdf
|bibcode = 2015JQSRT.156...67S
}}</ref>
 
<ref name=singham1987>{{cite journal |last1=Singham |first1=S. B. |last2=Bohren |first2=C. F. |title=Light scattering by an arbitrary particle: a physical reformulation of the coupled dipole method |journal=Opt. Lett. |volume=12 |issue=1 |pages=10–12 |date=1987-01-01 |doi=10.1364/OL.12.000010 |bibcode=1987OptL...12...10S}}</ref>
 
<ref name=smunev2015>{{cite journal |last1=Smunev |first1=D. A. |last2=Chaumet |first2=P. C. |last3=Yurkin |first3=M. A. |title=Rectangular dipoles in the discrete dipole approximation |journal=J. Quant. Spectrosc. Radiat. Transfer |volume=156 |pages=67–79 |year=2015 |doi=10.1016/j.jqsrt.2015.01.019 |url=https://scattering.ru/papers/Smunev%20et%20al.%20-%202015%20-%20Rectangular%20dipoles%20in%20the%20discrete%20dipole%20approxi.pdf |bibcode=2015JQSRT.156...67S}}</ref>
 
<ref name=zubko2010>{{cite journal |last1=Zubko |first1=E. |last2=Petrov |first2=D. |last3=Grynko |first3=Y. |last4=Shkuratov |first4=Y. |last5=Okamoto |first5=H. |title=Validity criteria of the discrete dipole approximation |journal=Appl. Opt. |volume=49 |issue=8 |pages=1267–1279 |year=2010 |doi=10.1364/AO.49.001267 |bibcode=2010ApOpt..49.1267Z}}</ref>
<ref name=zubko2010>{{cite journal
|last1=Zubko | first1=Evgenij | last2=Petrov | first2=Dmitry | last3=Grynko | first3=Yevgen | last4=Shkuratov | first4=Yuriy | last5=Okamoto | first5=Hajime | last6=Muinonen | first6=Karri | last7=Nousiainen | first7=Timo | last8=Kimura | first8=Hiroshi | last9=Yamamoto | first9=Tetsuo | last10=Videen | first10=Gorden |display-authors=5
|title=Validity criteria of the discrete dipole approximation
|journal=Appl. Opt.
|publisher=The Optical Society
|volume=49
|issue=8
|date=2010-03-04
|pages=1267–1279
|doi=10.1364/ao.49.001267
|pmid=20220882
|bibcode=2010ApOpt..49.1267Z
|hdl=2115/50065 | hdl-access=free
}}</ref>
 
<ref name=Yurkin2007a>{{cite journal |last1=Yurkin |first1=M. A. |last2=Hoekstra |first2=A. G. |title=The discrete dipole approximation: an overview and recent developments |journal=J. Quant. Spectrosc. Radiat. Transfer |volume=106 |issue=1–3 |pages=558–589 |year=2007 |doi=10.1016/j.jqsrt.2007.01.034 |arxiv=0704.0038 |url=https://scattering.ru/papers/Yurkin%20and%20Hoekstra%20-%202007%20-%20The%20discrete%20dipole%20approximation%20an%20overview%20and.pdf |bibcode=2007JQSRT.106..558Y}}</ref>
<ref name=Yurkin2007a>{{cite journal
|title=The discrete dipole approximation: an overview and recent developments
|author1=M. A. Yurkin |author2=A. G. Hoekstra
|arxiv=0704.0038
|journal= J. Quant. Spectrosc. Radiat. Transfer
|year=2007
|doi=10.1016/j.jqsrt.2007.01.034
|pages=558–589
|volume=106
|issue=1–3
|url=https://scattering.ru/papers/Yurkin%20and%20Hoekstra%20-%202007%20-%20The%20discrete%20dipole%20approximation%20an%20overview%20and.pdf
|bibcode = 2007JQSRT.106..558Y
|s2cid=119572857
}}</ref>
 
<ref name=yurkin2015>{{cite journal |last1=Yurkin |first1=M. A. |last2=Huntemann |first2=M. |title=Rigorous and fast discrete dipole approximation for particles near a plane interface |journal=J. Phys. Chem. C |volume=119 |issue=52 |pages=29088–29094 |year=2015 |doi=10.1021/acs.jpcc.5b09271 |url=https://scattering.ru/papers/Yurkin%20and%20Huntemann%20-%202015%20-%20Rigorous%20and%20fast%20discrete%20dipole%20approximation%20fo.pdf}}</ref>
<ref name=yurkin2015>{{Cite journal
|doi = 10.1021/acs.jpcc.5b09271
|volume = 119
|issue = 52
|pages = 29088–29094
|author1 = M. A. Yurkin
|author2 = M. Huntemann
|title = Rigorous and fast discrete dipole approximation for particles near a plane interface
|journal = The Journal of Physical Chemistry C
|date = 2015
|url = https://scattering.ru/papers/Yurkin%20and%20Huntemann%20-%202015%20-%20Rigorous%20and%20fast%20discrete%20dipole%20approximation%20fo.pdf
}}</ref>
 
 
 
<ref name=matlab2021>{{cite journal |last1=Shabaninezhad |first1=M. |last2=Awan |first2=M. G. |last3=Ramakrishna |first3=G. |title=MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient |journal=J. Quant. Spectrosc. Radiat. Transfer |volume=262 |pages=107501 |year=2021 |doi=10.1016/j.jqsrt.2020.107501 |bibcode=2021JQSRT.26207501S}}</ref>
<ref name=matlab2021>{{Cite journal
|doi = 10.1016/j.jqsrt.2020.107501
|volume = 262
|article-number = 107501
|author1 = M. Shabaninezhad |author2 = M. G. Awan |author3 = G. Ramakrishna
|title = MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient
|journal = J. Quant. Spectrosc. Radiat. Transfer
|year = 2021
|bibcode = 2021JQSRT.26207501S
|s2cid = 233839571
}}</ref>
 
<ref name=Yurkin2023>{{cite book |last=Yurkin |first=Maxim A. |title=Light, Plasmonics and Particles |chapter=Discrete Dipole Approximation |pages=167–198 |year=2023 |publisher=Elsevier |isbn=978-0-323-99901-4 |doi=10.1016/B978-0-323-99901-4.00020-2 |url=https://scattering.ru/books/Yurkin%20-%202023%20-%20Discrete%20dipole%20approximation.pdf}}</ref>
 
<ref name=chaumet2024>{{cite journal |last=Chaumet |first=Patrick C. |title=A comparative study of efficient iterative solvers for the discrete dipole approximation |journal=J. Quant. Spectrosc. Radiat. Transfer |volume=312 |pages=108816 |year=2024 |doi=10.1016/j.jqsrt.2023.108816 |bibcode=2024JQSRT.31208816C}}</ref>
<ref name="Yurkin2023">{{cite book
| doi = 10.1016/B978-0-323-99901-4.00020-2
| last1 = Yurkin
| first1 = Maxim A.
| title = Light, Plasmonics and Particles
| chapter = Discrete Dipole Approximation
| pages = 167–198
| year = 2023
| url =https://scattering.ru/books/Yurkin%20-%202023%20-%20Discrete%20dipole%20approximation.pdf
| publisher = Elsevier
| isbn = 978-0-323-99901-4
}}</ref>
 
<ref name=chaumet2023accelerating>{{cite journal |last1=Chaumet |first1=Patrick C. |last2=Maire |first2=Guillaume |last3=Sentenac |first3=Anne |title=Accelerating the discrete dipole approximation by initializing with a scalar solution and using a circulant preconditioning |journal=J. Quant. Spectrosc. Radiat. Transfer |volume=298 |pages=108505 |year=2023 |doi=10.1016/j.jqsrt.2023.108505 |bibcode=2023JQSRT.29808505C}}</ref>
<ref name="chaumet2024">{{cite journal
| last = Chaumet
| first = Patrick C.
| title = A comparative study of efficient iterative solvers for the discrete dipole approximation
| journal = Journal of Quantitative Spectroscopy and Radiative Transfer
| volume = 312
| year = 2024
| article-number = 108816
| publisher = Elsevier
| doi = 10.1016/j.jqsrt.2023.108816
| bibcode = 2024JQSRT.31208816C
| s2cid = 264805146
| doi-access = free
}}</ref>
 
<ref name=chaumet2022discrete>{{cite journal |last=Chaumet |first=Patrick C. |title=The discrete dipole approximation: A review |journal=Mathematics |volume=10 |issue=17 |pages=3049 |year=2022 |doi=10.3390/math10173049}}</ref>
 
<ref name="chaumet2023accelerating">{{cite journal
| last1 = Chaumet
| first1 = Patrick C.
| last2 = Maire
| first2 = Guillaume
| last3 = Sentenac
| first3 = Anne
| title = Accelerating the discrete dipole approximation by initializing with a scalar solution and using a circulant preconditioning
| journal = Journal of Quantitative Spectroscopy and Radiative Transfer
| volume = 298
| year = 2023
| article-number = 108505
| publisher = Elsevier
| doi = 10.1016/j.jqsrt.2023.108505
| bibcode = 2023JQSRT.29808505C
}}</ref>
 
<ref name=fu2023flashfftconv>{{cite arxiv |last1=Fu |first1=Daniel Y. |last2=Kumbong |first2=Hermann |last3=Nguyen |first3=Eric |last4=Ré |first4=Christopher |title=FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores |eprint=2311.05908 |year=2023 |class=cs.LG}}</ref>
<ref name="chaumet2022discrete">{{cite journal
| last1 = Chaumet
| first1 = Patrick Christian
| title = The discrete dipole approximation: A review
| journal = Mathematics
| volume = 10
| issue = 17
| pages = 3049
| year = 2022
| publisher = MDPI
| doi = 10.3390/math10173049
| doi-access = free
}}</ref>
 
<ref name=bowman2011efficient>{{cite journal |last1=Bowman |first1=J. C. |last2=Roberts |first2=M. |title=Efficient dealiased convolutions without padding |journal=SIAM J. Sci. Comput. |volume=33 |issue=1 |pages=386–406 |year=2011 |doi=10.1137/100787933 |arxiv=1008.1366 |bibcode=2011SJSC...33..386B}}</ref>
<ref name="fu2023flashfftconv">{{cite arXiv
| last1 = Fu
| first1 = Daniel Y
| last2 = Kumbong
| first2 = Hermann
| last3 = Nguyen
| first3 = Eric
| last4 = Ré
| first4 = Christopher
| title = FlashFFTConv: Efficient Convolutions for Long Sequences with Tensor Cores
| eprint = 2311.05908
| year = 2023
| class = cs.LG
}}</ref>
 
<ref name=Barrowes2001>{{cite journal |last1=Barrowes |first1=B. E. |last2=Teixeira |first2=F. L. |last3=Kong |first3=J. A. |title=Fast algorithm for matrix–vector multiply of asymmetric multilevel block-Toeplitz matrices in 3-D scattering |journal=Microw. Opt. Technol. Lett. |volume=31 |issue=1 |pages=28–32 |year=2001 |doi=10.1002/mop.1348}}</ref>
<ref name="bowman2011efficient">{{cite journal
| last1 = Bowman
| first1 = John C.
| last2 = Roberts
| first2 = Malcolm
| title = Efficient dealiased convolutions without padding
| journal = SIAM Journal on Scientific Computing
| volume = 33
| issue = 1
| pages = 386–406
| year = 2011
| publisher = SIAM
| doi = 10.1137/100787933
| arxiv = 1008.1366
| bibcode = 2011SJSC...33..386B
}}</ref>
 
<ref name="Barrowes2001"Goodman1991>{{cite journal |last1=BarrowesGoodman |first1=BJ. EJ. |last2=TeixeiraDraine |first2=FB. LT. |last3=KongFlatau |first3=JP. AJ. |year=2001 |title=Fast algorithm for matrix–vector multiplyApplication of asymmetricfast-Fourier-transform multilevel block-Toeplitztechniques matricesto inthe 3discrete-Ddipole scatteringapproximation |journal=MicrowaveOpt. and Optical Technology LettersLett. |volume=3116 |issue=115 |pages=28–321198–1200 |year=1991 |doi=10.10021364/mopOL.134816.001198 |bibcode=1991OptL...16.1198G}}</ref>
 
<ref name="Goodman1991">{{cite journal
| last1 = Goodman
| first1 = John J.
| last2 = Draine
| first2 = Bruce T.
| last3 = Flatau
| first3 = Piotr J.
| title = Application of fast-Fourier-transform techniques to the discrete-dipole approximation
| journal = Optics Letters
| volume = 16
| issue = 15
| pages = 1198–1200
| year = 1991
| publisher = Optica Publishing Group
| doi = 10.1364/OL.16.001198
| pmid = 19776919
| bibcode = 1991OptL...16.1198G
}}</ref>
 
<ref name="Petravic1979">{{cite journal |last1=Petravic |first1=M. |last2=Kuo-Petravic |first2=G. |title=An ILUCG algorithm which minimizes in the euclidean norm |journal=Journal of Computational Physics |volume=32 |issue=2 |pages=263–269 |year=1979|doi=10.1016/0021-9991(79)90133-5 |bibcode=1979JCoPh..32..263P |url=https://digital.library.unt.edu/ark:/67531/metadc1195635/ }}</ref>