Content deleted Content added
Link suggestions feature: 3 links added. |
Section-title capitalization and moved a section down one level |
||
Line 229:
}}</ref>
=== Wireless
In wireless communications, a scaled version of the stretched exponential function has been shown to appear in the Laplace Transform for the interference power <math>I</math> when the transmitters' locations are modeled as a 2D [[Poisson point process|Poisson Point Process]] with no exclusion region around the receiver.<ref>{{cite book
Line 247:
The same reference also shows how to obtain the inverse Laplace Transform for the stretched exponential <math>\exp\left(-s^\beta \right)</math> for higher order integer <math>\beta = \beta_q \beta_b </math> from lower order integers <math>\beta_a</math> and <math>\beta_b</math>.{{Citation needed|date=May 2023}}
=== Internet
The stretched exponential has been used to characterize Internet media accessing patterns, such as YouTube and other stable [[streaming media]] sites.<ref>{{Cite conference |author= Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, and Xiaodong Zhang| title="The Stretched Exponential Distribution of Internet Media Access Patterns" |conference= PODC' 08| pages=283–294|year=2008 | doi=10.1145/1400751.1400789 }}</ref> The commonly agreed power-law accessing patterns of Web workloads mainly reflect text-based content Web workloads, such as daily updated news sites.<ref>{{cite journal |last1=Adamic|first1=Lada A. |last2=Bernardo A. |first2=Huberman |year=2000 |title=Power-Law Distribution of the World Wide Web |url= |journal=Science |volume=287 |issue=5461 |pages=2115-2115 |doi=10.1126/science.287.5461.2115a}}</ref>
Line 257:
* J. Wuttke: [http://apps.jcns.fz-juelich.de/kww libkww] C library to compute the Fourier transform of the stretched exponential function
[[Category:Exponentials]]
|