Content deleted Content added
rm refspam, see talk as well |
Anisotropy as an advantage Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
Line 175:
# Parallel-processing computer architectures have come to dominate supercomputing. FDTD scales with high efficiency on parallel-processing CPU-based computers, and extremely well on recently developed GPU-based accelerator technology.<ref name="taflove05" />
# Computer visualization capabilities are increasing rapidly. While this trend positively influences all numerical techniques, it is of particular advantage to FDTD methods, which generate time-marched arrays of field quantities suitable for use in color videos to illustrate the field dynamics.<ref name="taflove05" />
# Anisotropy is treated naturally by the FDTD method. Yee cells, having components in each Cartesian direction, can be easily configured with anisotropic characteristics.<ref name="taflove05"/>
Taflove has argued that these factors combine to suggest that FDTD will remain one of the dominant computational electrodynamics techniques (as well as potentially other [[multi-physics|multiphysics]] problems).<ref name="taflove05" />
==See also==
|