History of computing hardware: Difference between revisions

Content deleted Content added
use inflation year templates to match Wikipedia's inflation data
Electromechanical computers: Z3 was turing-complete only by imporactical trickd.
Line 113:
 
[[File:Z3 Deutsches Museum.JPG|thumb|left|Replica of [[Konrad Zuse|Zuse]]'s [[Z3 (computer)|Z3]], the first fully automatic, digital (electromechanical) computer]]
In 1941, Zuse followed his earlier machine up with the [[Z3 (computer)|Z3]],<ref name="Part 4 Zuse"/> the world's first working [[electromechanical]] [[Computer programming|programmable]], fully automatic digital computer.<ref>{{cite news|title=A Computer Pioneer Rediscovered, 50 Years On |newspaper=The New York Times |url=https://www.nytimes.com/1994/04/20/news/20iht-zuse.html |date=20 April 1994 |access-date=2017-02-16 |archive-date=2016-11-04 |archive-url=https://web.archive.org/web/20161104051054/http://www.nytimes.com/1994/04/20/news/20iht-zuse.html|url-status=live}}</ref> The Z3 was built with 2000 [[relay]]s, implementing a 22-[[bit]] [[Word (computer architecture)|word length]] that operated at a [[clock rate|clock frequency]] of about 5–10&nbsp;[[Hertz|Hz]].{{sfn|Zuse|1993|p=55}} Program code and data were stored on punched [[celluloid|film]]. It was quite similar to modern machines in some respects, pioneering numerous advances such as [[floating-point arithmetic|floating-point numbers]]. Replacement of the hard-to-implement decimal system (used in [[Charles Babbage]]'s earlier design) by the simpler [[binary number|binary]] system meant that Zuse's machines were easier to build and potentially more reliable, given the technologies available at that time.<ref>{{cite web |url=https://www.crash-it.com/crash/index.php?page=73 |archive-url=https://web.archive.org/web/20080318184915/http://www.crash-it.com/crash/index.php?page=73 |url-status=dead |archive-date=2008-03-18 |title=Zuse |work=Crash! The Story of IT}}</ref> TheDespite lacking explicit conditional execution, the Z3 was proven to have been a theoretically [[Turing machine|Turing-complete machine]] in 1998 by [[Raúl Rojas]].<ref>{{Cite book|last=Rojas|first=Raúl|title=How to Make Zuse's Z3 a Universal Computer |date=1998 |citeseerx=10.1.1.37.665}}</ref> In two 1936 [[patent]] applications, Zuse also anticipated that machine instructions could be stored in the same storage used for data—the key insight of what became known as the [[von Neumann architecture]], first implemented in 1948 in America in the [[Mechanical computer#Electro-mechanical computers|electromechanical]] [[IBM SSEC]] and in Britain in the fully electronic [[Manchester Baby]].<ref>{{cite journal |title=Electronic Digital Computers |journal=Nature |last1=Williams |first1=F. C. |last2=Kilburn |first2=T. |date=25 September 1948 |volume=162 |issue=4117 |page=487 |bibcode=1948Natur.162..487W |doi=10.1038/162487a0 |s2cid=4110351 |doi-access=free }}</ref>
 
Zuse suffered setbacks during World War II when some of his machines were destroyed in the course of [[Allies of World War II|Allied]] bombing campaigns. Apparently his work remained largely unknown to engineers in the UK and US until much later, although at least IBM was aware of it as it financed his post-war startup company in 1946 in return for an option on Zuse's patents.