Content deleted Content added
Tag: Reverted |
m Reverted 1 edit by 38.117.113.7 (talk) to last revision by 2405:6583:9320:C600:8114:6614:10B4:84E3 |
||
Line 140:
To see the relation between the sequence and these constants,{{Sfn | Ball | 2003 | pp = 155–156}} note that <math>\varphi</math> and <math>\psi</math> are both solutions of the equation <math display=inline>x^2 = x + 1</math> and thus <math>x^n = x^{n-1} + x^{n-2},</math> so the powers of <math>\varphi</math> and <math>\psi</math> satisfy the Fibonacci recursion. In other words,
<math display=block>\begin{align}
\varphi^n &= \varphi^{n-1} + \varphi^{n-2}, \\[3mu]
\psi^n &= \psi^{n-1} + \psi^{n-2}.
\end{align}</math>
It follows that for any values {{mvar|a}} and {{mvar|b}}, the sequence defined by
<math display=block>U_n=a \varphi^n + b \psi^n</math>
satisfies the same recurrence,
<math display=block>\begin{align}
Line 158 ⟶ 167:
<math display=block>
a = \frac{1}{\varphi-\psi} = \frac{1}{\sqrt 5},\quad b = -a,
</math>
producing the required formula.
Taking the starting values {{math|''U''<sub>0</sub>}} and {{math|''U''<sub>1</sub>}} to be arbitrary constants, a more general solution is:
<math display=block> U_n = a\varphi^n + b\psi^n </math>
where
<math display=block>\begin{align}
a&=\frac{U_1-U_0\psi}{\sqrt 5}, \\[3mu]
b&=\frac{U_0\varphi-U_1}{\sqrt 5}.
\end{align}</math>
=== Computation by rounding ===
|