Discrete dipole approximation: Difference between revisions

Content deleted Content added
dimensions
No edit summary
Line 246:
Each dipole has three vector components (<math>x</math>, <math>y</math>, <math>z</math>), so we can rearrange the unknown vector <math>\mathbf{P}</math> by grouping all x-components together, then y-components, then z-components:
 
 
:<math>
\mathbf{P} =
\begin{bmatrix}
Line 252 ⟶ 253:
\mathbf{P}_y \\
\mathbf{P}_z
\end{bmatrix},
\in \mathbb{C}^{3N}
\quad \text{where} \quad
\mathbf{P}_x =
\begin{bmatrix}
Line 277 ⟶ 280:
 
Similarly, the incident field can be grouped as:
:<math>
 
\mathbf{E}^_{\mathrm{inc}} =
<math>
\mathbf{E}^{\mathrm{inc}} =
\begin{bmatrix}
\mathbf{E}_x^{\mathrm{inc}} \\
Line 285 ⟶ 287:
\mathbf{E}_z^{\mathrm{inc}}
\end{bmatrix}
\in \mathbb{C}^{3N}
</math>
 
 
Because the system is linear, we can equivalently rewrite it in block matrix form, that describe how the <math>\beta</math>-component of polarization affects the <math>\alpha</math>-component of the resulting field: