Content deleted Content added
No edit summary |
No edit summary |
||
Line 327:
Each matrix-vector multiplication <math>\mathbf{G}_{\alpha\beta} \mathbf{P}_\beta</math> can be computed as a convolution when the dipoles are arranged on a regular grid, allowing the use of Fast Fourier Transforms (FFTs) to accelerate the solution.
Let <math>\boldsymbol{\beta}_j = \boldsymbol{\alpha}_j^{-1}</math> denote the inverse polarizability tensor for dipole <math>j</math>. Each <math>\boldsymbol{\beta}_j</math> is a complex-valued <math>3 \times 3</math> matrix. This gives:
<math>
\mathrm{diag}(\
\mathrm{diag}(\
\mathrm{diag}(\alpha_{1,xz}^{-1}, \dots, \alpha_{N,xz}^{-1}) \, \mathbf{P}_z \\▼
▲(\boldsymbol{\alpha}^{-1} \mathbf{P})_y &=
\mathrm{diag}(\alpha_{1,yx}^{-1}, \dots, \alpha_{N,yx}^{-1}) \, \mathbf{P}_x +▼
\mathrm{diag}(\alpha_{1,yy}^{-1}, \dots, \alpha_{N,yy}^{-1}) \, \mathbf{P}_y +▼
\mathrm{diag}(\alpha_{1,yz}^{-1}, \dots, \alpha_{N,yz}^{-1}) \, \mathbf{P}_z \\▼
(\boldsymbol{\alpha}^{-1} \mathbf{P})_z &= ▼
\mathrm{diag}(\alpha_{1,zx}^{-1}, \dots, \alpha_{N,zx}^{-1}) \, \mathbf{P}_x +▼
\mathrm{diag}(\alpha_{1,zy}^{-1}, \dots, \alpha_{N,zy}^{-1}) \, \mathbf{P}_y +▼
</math>
<math>
(\boldsymbol{\beta} \mathbf{P})_y =
</math>
<math>
</math>
In the special case of an isotropic and homogeneous particle, the polarizabilities <math>\boldsymbol{\alpha}_j</math> are identical for all dipoles and proportional to the identity matrix: <math>\boldsymbol{\alpha}_j = \alpha \, \mathbf{I}</math>. Then, the inverse becomes <math>\boldsymbol{\beta}_j = \alpha^{-1} \, \mathbf{I}</math>, all off-diagonal elements vanish, and the expressions reduce to a simple element-wise division:
<math>
(\boldsymbol{\beta} \mathbf{P}) = \frac{1}{\alpha} \, \mathbf{P}
</math>
|