Second-order cone programming: Difference between revisions

Content deleted Content added
copyedit
Second-order cones: being semidefinite is not a linear constraint - nomenclature is confusing, give the definition
Line 42:
:<math>||x||\leq t \Leftrightarrow \begin{bmatrix} tI & x \\ x^T & t \end{bmatrix} \succcurlyeq 0,</math>
 
i.e., a second-order cone constraint is equivalent to a [[linear matrix inequality]] (Here <math>M\succcurlyeq 0 </math> means <math>M </math> is a semidefinite matrix).: Similarly,that weis alsoto have,say
 
:<math>\mathbf{x}^\mathsf{T} M\mathbf{x} \geq 0 \text{ for all } \mathbf{x} \in \mathbb{R}^n</math>.
 
Similarly, we also have,
 
:<math>\lVert A_i x + b_i \rVert_2 \leq c_i^T x + d_i \Leftrightarrow