Content deleted Content added
TakuyaMurata (talk | contribs) No edit summary |
TakuyaMurata (talk | contribs) No edit summary |
||
Line 6:
The sheaf <math>\mathcal{E}</math> of microdifferential operators on <math>T^* X</math> is then a formal microdifferential operator that satisfies the growh condition on the negative terms; namely, for each compact subset <math>K \subset U</math>, there exists an <math>\epsilon > 0</math> such that
:<math>\sum_{j \le 0} \sup_K|p_j| \epsilon^{-j}/(-j)! < \infty.</math>
<ref>{{harvnb|Schapira|1985|loc=Ch. I., § 1.3.}}</ref>
== Reference ==
===Notes===
{{reflist}}
===Works===
* Aoki, T., Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I, Ann. Inst. Fourier, Grenoble, 33–4 (1983), 227–250.
*{{cite book |last1=Schapira |first1=Pierre |title=Microdifferential Systems in the Complex Domain |series=Grundlehren der mathematischen Wissenschaften |date=1985 |volume=269 |publisher=Springer |doi=10.1007/978-3-642-61665-5 |isbn=978-3-642-64904-2 |url=https://link.springer.com/book/10.1007/978-3-642-61665-5}}
|