→Other theories of quantum physics: the model that shows the speedup is not based on Bohmian mechnics: it uses discrete-valued observables which Bohm does not have (using only position); added non-signaling as an important property of the HVs used
It has been speculated that further advances in physics could lead to even faster computers. For instance, it has been shown that a non-local, but non-signaling hidden variable quantum computer could implement a search of an {{mvar|N}}-item database in at most <math>O(\sqrt[3]{N})</math> steps, a slight speedup over [[Grover's algorithm]], which runs in <math>O(\sqrt{N})</math> steps. Note, however, that neither search method would allow quantum computers to solve [[NP-complete]] problems in polynomial time.<ref name="auto">{{cite webjournal |title=Quantum Computing and Hidden Variables |last=Aaronson |first=Scott |journal=Phys. Rev. A |volume=71 |pages=032325 |date=2005 |doi=10.1103/PhysRevA.71.032325 |arxiv=quant-ph/0408035 |url=http://www.scottaaronson.com/papers/qchvpra.pdf}}</ref> Theories of [[quantum gravity]], such as [[M-theory]] and [[loop quantum gravity]], may allow even faster computers to be built. However, defining computation in these theories is an open problem due to the [[problem of time]]; that is, within these physical theories there is currently no obvious way to describe what it means for an observer to submit input to a computer at one point in time and then receive output at a later point in time.<ref>{{Cite journal |first=Scott |last=Aaronson |title=NP-complete Problems and Physical Reality |journal=ACM SIGACT News |volume=2005 |arxiv=quant-ph/0502072 |year=2005 |bibcode=2005quant.ph..2072A |author-link=Scott Aaronson}} See section 7 "Quantum Gravity": "[...] to anyone who wants a test or benchmark for a favorite quantum gravity theory,[author's footnote: That is, one without all the bother of making numerical predictions and comparing them to observation] let me humbly propose the following: ''can you define Quantum Gravity Polynomial-Time?'' [...] until we can say what it means for a 'user' to specify an 'input' and 'later' receive an 'output'—''there is no such thing as computation, not even theoretically.''" (emphasis in original)</ref><ref>{{cite web |url=http://www.dwavesys.com/en/pressreleases.html#lm_2011 |title=D-Wave Systems sells its first Quantum Computing System to Lockheed Martin Corporation |access-date=30 May 2011 |date=25 May 2011 |publisher=D-Wave |archive-date=22 December 2020 |archive-url=https://web.archive.org/web/20201222041457/https://www.dwavesys.com/en/pressreleases.html#lm_2011 |url-status=dead }}</ref>