Complex number: Difference between revisions

Content deleted Content added
Line 135:
for {{math|0 ≤ ''k'' ≤ ''n'' − 1}}. (Here <math>\sqrt[n]r</math> is the usual (positive) {{mvar|n}}th root of the positive real number {{mvar|r}}.) Because sine and cosine are periodic, other integer values of {{mvar|k}} do not give other values. For any <math>z \ne 0</math>, there are, in particular ''n'' distinct complex ''n''-th roots. For example, there are 4 fourth roots of 1, namely
:<math>z_1 = 1, z_2 = i, z_3 = -1, z_4 = -i.</math>
In general there is ''no'' natural way of distinguishing one particular complex {{mvar|n}}th root of a complex number. (This is in contrast to the roots of a positive real number ''x'', which has a unique positive real ''n''-th root, which is therefore commonly referred to as ''the'' ''n''-th root of ''x''.) One refers to this situation by saying that the {{mvar|n}}th root is a [[multivalued function|{{mvar|n}}-valued function]] of {{mvar|z}}.
 
===Fundamental theorem of algebra===