Content deleted Content added
m →History |
|||
Line 62:
Even after gaining serious attention, the Taniyama–Shimura–Weil conjecture was seen by contemporary mathematicians as extraordinarily difficult to prove or perhaps even inaccessible to proof<!--{{harv|Singh|1997|pp=203–205, 223, 226}}-->.{{sfn|Singh|1997|pp=203–205, 223, 226}} For example, Wiles's Ph.D. supervisor [[John H. Coates|John Coates]] states that it seemed "impossible to actually prove", and Ken Ribet considered himself "one of the vast majority of people who believed [it] was completely inaccessible".
With Ribet’s proof of the epsilon conjecture, Andrew Wiles saw an opportunity: Fermat’s Last Theorem was a respectable research project because it was now a corollary of the TSW conjecture. He had expertise in [[Iwasawa theory]]; maybe there was a path from Iwasawa theory to Taniyama–Shimura–Weil.
In 1995, Andrew Wiles, with some help from [[Richard Taylor (mathematician)|Richard Taylor]], proved the Taniyama–Shimura–Weil conjecture for all [[semistable elliptic curve]]s. Wiles used this to prove Fermat's Last Theorem,{{sfnm|Wiles|1995a|Wiles|1995b}}<!--{{harvs|txt|authorlink=Andrew Wiles|last=Wiles|year=1995}}--> and the full Taniyama–Shimura–Weil conjecture was finally proved by Diamond,{{sfn|Diamond|1996}}<!--{{harvtxt|Diamond|1996}}--> Conrad, Diamond & Taylor; and Breuil, Conrad, Diamond & Taylor; building on Wiles's work, they incrementally chipped away at the remaining cases until the full result was proved in 1999.{{sfn|Conrad|Diamond|Taylor|1999}}<!--{{harvtxt|Conrad|Diamond|Taylor|1999}}-->{{sfn|Breuil|Conrad|Diamond|Taylor|2001}}<!--{{harvtxt|Breuil|Conrad|Diamond|Taylor|2001}}--> Once fully proven, the conjecture became known as the modularity theorem.
|