Brain–computer interface: Difference between revisions

Content deleted Content added
Remove image which adds nothing to the article
Move the best image that exists in this article to represent the subject visually to the main image spot
Line 2:
{{Use dmy dates|date=December 2022}}
{{Short description|Direct communication pathway between an enhanced or wired brain and an external device}}
[[File:Photograph-by-mikeCaiChen.jpg|alt=Participant in a brain-computer interface is Getting connected to a computer|thumb|Participant in a brain-computer interface is getting connected to a computer ]]
[[File:BrainGate.jpg|thumb|Dummy unit illustrating the design of a [[BrainGate]] interface]]
 
Line 120 ⟶ 121:
====Communication====
In May 2021, a Stanford University team reported a successful proof-of-concept test that enabled a quadraplegic participant to produce English sentences at about 86 characters per minute and 18 words per minute. The participant imagined moving his hand to write letters, and the system performed handwriting recognition on electrical signals detected in the motor cortex, utilizing [[Hidden Markov models]] and [[recurrent neural networks]].<ref>{{cite journal | vauthors = Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV | title = High-performance brain-to-text communication via handwriting | journal = Nature | volume = 593 | issue = 7858 | pages = 249–254 | date = May 2021 | pmid = 33981047 | pmc = 8163299 | doi = 10.1038/s41586-021-03506-2 | bibcode = 2021Natur.593..249W }}</ref><ref>{{cite book | vauthors = Willett FR |title=Brain-Computer Interface Research: A State-of-the-Art Summary 10|chapter=A High-Performance Handwriting BCI|date=2021 |pages=105–109| veditors = Guger C, Allison BZ, Gunduz A |series=SpringerBriefs in Electrical and Computer Engineering|place=Cham|publisher=Springer International Publishing|language=en|doi=10.1007/978-3-030-79287-9_11|isbn=978-3-030-79287-9 |s2cid=239736609}}</ref>
[[File:Photograph-by-mikeCaiChen.jpg|alt=Participant in a brain-computer interface is Getting connected to a computer|thumb|Participant in a brain-computer interface is getting connected to a computer ]]
Since researchers from [[University of California, San Francisco|UCSF]] initiated a brain-computer interface (BCI) study, numerous reports have been made. In 2021, they reported that a paralyzed and with [[Dysarthria|anarthria]] man was able to communicate fifteen words per minute using an implanted device that examined nerve cells controlling the muscles of the vocal tract.<ref>{{Cite journal |last1=Moses |first1=David A. |last2=Metzger |first2=Sean L. |last3=Liu |first3=Jessie R. |last4=Anumanchipalli |first4=Gopala K. |last5=Makin |first5=Joseph G. |last6=Sun |first6=Pengfei F. |last7=Chartier |first7=Josh |last8=Dougherty |first8=Maximilian E. |last9=Liu |first9=Patricia M. |last10=Abrams |first10=Gary M. |last11=Tu-Chan |first11=Adelyn |last12=Ganguly |first12=Karunesh |last13=Chang |first13=Edward F. |date=2021-07-14 |title=Neuroprosthesis for Decoding Speech in a Paralyzed Person with Anarthria |journal=New England Journal of Medicine |volume=385 |issue=3 |pages=217–227 |doi=10.1056/NEJMoa2027540 |issn=0028-4793 |pmc=8972947 |pmid=34260835}}</ref><ref>{{Cite journal |last1=Maiseli |first1=Baraka |last2=Abdalla |first2=Abdi T. |last3=Massawe |first3=Libe V. |last4=Mbise |first4=Mercy |last5=Mkocha |first5=Khadija |last6=Nassor |first6=Nassor Ally |last7=Ismail |first7=Moses |last8=Michael |first8=James |last9=Kimambo |first9=Samwel |date=2023-08-04 |title=Brain–computer interface: trend, challenges, and threats |journal=Brain Informatics |volume=10 |issue=1 |pages=20 |doi=10.1186/s40708-023-00199-3 |doi-access=free |issn=2198-4026 |pmc=10403483 |pmid=37540385}}</ref> In addition in 2022 it was announced that their implant could also be used to spell out words and entire sentences without speaking aloud. The first bilingual speech neuroprosthesis was reported to have been developed by the same team at the University of San Francisco, in 2024.<ref>{{Cite journal |last=Matsiko |first=Amos |date=2024-08-21 |title=Bilingual speech neuroprosthesis |url=https://www.science.org/doi/10.1126/scirobotics.ads4122 |journal=Science Robotics |volume=9 |issue=93 |pages=eads4122 |doi=10.1126/scirobotics.ads4122|url-access=subscription }}</ref><ref>{{Cite journal |last1=Silva |first1=Alexander B. |last2=Liu |first2=Jessie R. |last3=Metzger |first3=Sean L. |last4=Bhaya-Grossman |first4=Ilina |last5=Dougherty |first5=Maximilian E. |last6=Seaton |first6=Margaret P. |last7=Littlejohn |first7=Kaylo T. |last8=Tu-Chan |first8=Adelyn |last9=Ganguly |first9=Karunesh |last10=Moses |first10=David A. |last11=Chang |first11=Edward F. |date=August 2024 |title=A bilingual speech neuroprosthesis driven by cortical articulatory representations shared between languages |journal=Nature Biomedical Engineering |language=en |volume=8 |issue=8 |pages=977–991 |doi=10.1038/s41551-024-01207-5 |pmid=38769157 |pmc=11554235 |issn=2157-846X}}</ref><ref>{{Cite web |date=2024-05-28 |title=Bilingual AI brain implant helps stroke survivor communicate in Spanish and English |url=https://www.nbcnews.com/news/latino/bilingual-ai-brain-implant-spanish-english-stroke-patient-rcna154295 |access-date=2025-06-23 |website=NBC News |language=en}}</ref>