Content deleted Content added
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
Link suggestions feature: 2 links added. Tags: Visual edit Mobile edit Mobile web edit Newcomer task Suggested: add links |
||
Line 82:
</math>
where <math>\mathcal{C}</math> is a [[convex set]] and the equality holds if:
:<math> Q = Q^{*} \triangleq \arg\min_{Q\in\mathcal{C}}D_{\mathrm{KL}}(Q\parallel P). </math>
Line 129:
Using the properties of expectations, the expression <math>\operatorname{E}_{q^*_{-j}} [\ln p(\mathbf{Z}, \mathbf{X})]</math> can usually be simplified into a function of the fixed [[Hyperparameter (Bayesian statistics)|hyperparameter]]s of the [[prior distribution]]s over the latent variables and of expectations (and sometimes higher [[moment (mathematics)|moment]]s such as the [[variance]]) of latent variables not in the current partition (i.e. latent variables not included in <math>\mathbf{Z}_j</math>). This creates [[circular dependency|circular dependencies]] between the parameters of the distributions over variables in one partition and the expectations of variables in the other partitions. This naturally suggests an [[iterative]] algorithm, much like EM (the [[expectation–maximization algorithm]]), in which the expectations (and possibly higher moments) of the latent variables are initialized in some fashion (perhaps randomly), and then the parameters of each distribution are computed in turn using the current values of the expectations, after which the expectation of the newly computed distribution is set appropriately according to the computed parameters. An algorithm of this sort is guaranteed to [[limit of a sequence|converge]].<ref>{{cite book|title=Convex Optimization|first1=Stephen P.|last1=Boyd|first2=Lieven|last2=Vandenberghe|year=2004|publisher=Cambridge University Press|isbn=978-0-521-83378-3|url=https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf|access-date=October 15, 2011}}</ref>
In other words, for each of the partitions of variables, by simplifying the expression for the distribution over the partition's variables and examining the distribution's [[functional dependency]] on the variables in question, the family of the distribution can usually be determined (which in turn determines the value of the constant). The formula for the distribution's parameters will be expressed in terms of the prior distributions' hyperparameters (which are known constants), but also in terms of expectations of functions of variables in other partitions. Usually these expectations can be simplified into functions of expectations of the variables themselves (i.e. the [[mean]]s); sometimes expectations of squared variables (which can be related to the [[variance]] of the variables), or expectations of higher powers (i.e. higher [[moment (mathematics)|moment]]s) also appear. In most cases, the other variables' distributions will be from known families, and the formulas for the relevant expectations can be looked up. However, those formulas depend on those distributions' parameters, which depend in turn on the expectations about other variables. The result is that the formulas for the parameters of each variable's distributions can be expressed as a series of equations with mutual, [[nonlinear]] dependencies among the variables. Usually, it is not possible to solve this system of equations directly. However, as described above, the dependencies suggest a simple iterative algorithm, which in most cases is guaranteed to converge. An example will make this process clearer.
==A duality formula for variational inference==
|