Content deleted Content added
Citation bot (talk | contribs) Add: doi, article-number. Removed URL that duplicated identifier. Removed access-date with no URL. Removed parameters. Some additions/deletions were parameter name changes. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Folkezoft | Category:CS1 errors: ISBN | #UCB_Category 535/539 |
m fix common MOS:REFSPACE spacing errors, replaced: , <ref → ,<ref, /> <ref → /><ref |
||
Line 35:
== History and relation to other theories ==
The first relation between supersymmetry and stochastic dynamics was established in two papers in 1979 and 1982 by [[Giorgio Parisi]] and Nicolas Sourlas,<ref name=":9">{{Cite journal|last1=Parisi|first1=G.|last2=Sourlas|first2=N.|date=1979|title=Random Magnetic Fields, Supersymmetry, and Negative Dimensions|journal=Physical Review Letters|volume=43|issue=11|pages=744–745|doi=10.1103/PhysRevLett.43.744|bibcode=1979PhRvL..43..744P}}</ref><ref name=":15">{{Cite journal|last=Parisi|first=G.|title=Supersymmetric field theories and stochastic differential equations|journal=Nuclear Physics B|language=en|volume=206|issue=2|pages=321–332|doi=10.1016/0550-3213(82)90538-7|year=1982|bibcode=1982NuPhB.206..321P}}</ref> where [[Langevin equation|Langevin SDEs]] -- SDEs with linear phase spaces, gradient flow vector fields, and additive noises -- were given supersymmetric representation with the help of the [[BRST quantization|BRST]] gauge fixing procedure. While the original goal of their work was [[dimensional reduction]],
The Parisi-Sourlas method has been extended to several other classes of dynamical systems, including [[classical mechanics]],<ref name=":1">{{Cite journal|last1=Gozzi|first1=E.|last2=Reuter|first2=M.|title=Classical mechanics as a topological field theory|journal=Physics Letters B|language=en|volume=240|issue=1–2|pages=137–144|doi=10.1016/0370-2693(90)90422-3|year=1990|bibcode=1990PhLB..240..137G|url=https://cds.cern.ch/record/204132|url-access=subscription}}</ref><ref name=":16">{{Cite journal|last=Niemi|first=A. J.|title=A lower bound for the number of periodic classical trajectories|journal=Physics Letters B|language=en|volume=355|issue=3–4|pages=501–506|doi=10.1016/0370-2693(95)00780-o|year=1995|bibcode=1995PhLB..355..501N}}</ref> its stochastic generalization,<ref name=":13">{{Cite journal|last1=Tailleur|first1=J.|last2=Tănase-Nicola|first2=S.|last3=Kurchan|first3=J.|date=2006-02-01|title=Kramers Equation and Supersymmetry|journal=Journal of Statistical Physics|language=en|volume=122|issue=4|pages=557–595|doi=10.1007/s10955-005-8059-x|issn=0022-4715|bibcode=2006JSP...122..557T|arxiv=cond-mat/0503545|s2cid=119716999}}</ref> and higher-order Langevin SDEs.<ref name=":14">{{Cite journal|last1=Kleinert|first1=H.|last2=Shabanov|first2=S. V.|date=1997-10-27|title=Supersymmetry in stochastic processes with higher-order time derivatives|journal=Physics Letters A|volume=235|issue=2|pages=105–112|doi=10.1016/s0375-9601(97)00660-9|bibcode=1997PhLA..235..105K|arxiv=quant-ph/9705042|s2cid=119459346}}</ref>
Line 303:
Its phenomenological understanding is largely based on the concepts of [[Adaptive system|self-adaptation]] and [[self-organized criticality|self-organization]].<ref>{{Cite journal|last1=Watkins|first1=N. W.|last2=Pruessner|first2=G.|last3=Chapman|first3=S. C.|last4=Crosby|first4=N. B.|last5=Jensen|first5=H. J.|date=2016-01-01|title=25 Years of Self-organized Criticality: Concepts and Controversies|journal=Space Science Reviews|language=en|volume=198|issue=1–4|pages=3–44|doi=10.1007/s11214-015-0155-x|issn=0038-6308|bibcode=2016SSRv..198....3W|arxiv=1504.04991|s2cid=34782655}}</ref><ref>{{Cite journal|last1=Bak|first1=P.|last2=Tang|first2=C.|last3=Wiesenfeld|first3=K.|date=1987|title=Self-organized criticality: An explanation of the 1/f noise|journal=Physical Review Letters|volume=59|issue=4|pages=381–384|doi=10.1103/PhysRevLett.59.381|pmid=10035754|bibcode=1987PhRvL..59..381B|s2cid=7674321 }}</ref>
STS offers the following explanation for the [[Edge of chaos]] (see figure on the right).,<ref name=":10"/>
<ref> {{cite journal|last1=Witten|first1=Edward|title=Dynamical breaking of supersymmetry|journal=Nuclear Physics B|date=1988|volume=188|issue=3|pages=513–554|doi=10.1016/0550-3213(81)90006-7}} </ref>
Under this condition, the dynamics must be dominated by instantons with power-law distributions, as dictated by the Goldstone theorem. In the deterministic limit, the noise-induced instantons vanish, causing the phase hosting this type of noise-induced dynamics to collapse onto the boundary of the deterministic chaos (see figure on the right).
|