Content deleted Content added
m Spelling Tags: Visual edit Mobile edit Mobile web edit |
m →Submodules and homomorphisms: manually size braces and | divider when using set-builder notation with a summation inside |
||
Line 55:
Suppose ''M'' is a left ''R''-module and ''N'' is a [[subgroup]] of ''M''. Then ''N'' is a '''submodule''' (or more explicitly an ''R''-submodule) if for any ''n'' in ''N'' and any ''r'' in ''R'', the product {{nowrap|''r'' ⋅ ''n''}} (or {{nowrap|''n'' ⋅ ''r''}} for a right ''R''-module) is in ''N''.
If ''X'' is any [[subset]] of an ''R''-module ''M'', then the submodule spanned by ''X'' is defined to be <math display="inline">\langle X \rangle = \,\bigcap_{N\supseteq X} N</math> where ''N'' runs over the submodules of ''M'' that contain ''X'', or explicitly <math display="inline">\
The set of submodules of a given module ''M'', together with the two binary operations + (the module spanned by the union of the arguments) and ∩, forms a [[Lattice (order)|lattice]] that satisfies the '''[[modular lattice|modular law]]''':
|