Content deleted Content added
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
m →top: HTTP to HTTPS for Cornell University |
||
Line 7:
'''Lagrange point colonization''' is a proposed form of [[Space_colonization#Near-Earth space|space colonization]]<ref>{{Cite web|url=https://www.forbes.com/sites/brucedorminey/2012/07/31/death-of-a-sci-fi-dream-free-floating-space-colonies-hit-economic-reality/#3f0895e77431|title=Death Of A Sci-Fi Dream: Free-Floating Space Colonies Hit Economic Reality|last=Dorminey|first=Bruce|author-link=Bruce Dorminey|date=July 31, 2012|website=Forbes|access-date=December 17, 2018}}</ref> of the five equilibrium points in the orbit of a planet or its primary moon, called [[Lagrange point]]s.
The Lagrange points {{L4}} and {{L5}} are stable if the mass of the larger body is at least 25 times the mass of the secondary body.<ref>{{cite web|last1=Fitzpatrick|first1=Richard|title=Stability of Lagrange Points|url=http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node126.html|website=Newtonian Dynamics|publisher=University of Texas}}</ref><ref>{{cite web|last1=Greenspan|first1=Thomas|title=Stability of the Lagrange Points, L4 and L5|url=
[[Gerard K. O'Neill]] suggested in 1974 that the Earth–Moon L<sub>5</sub> point, in particular, could fit several thousands of floating colonies, and would allow easy travel to and from the colonies due to the shallow [[effective potential]] at this point. A contemporary NASA team estimated that a 500,000-tonne colony would cost US$5.1 billion (equivalent to US${{inflation|US|5.1|1974}} billion in {{Inflation/year|US}}) to build.<ref name="o'neill"/>
|