Multi-task learning: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Neko-chan | #UCB_webform 208/500
Bender the Bot (talk | contribs)
m top: HTTP to HTTPS for Cornell University
 
Line 1:
{{short description|Solving multiple machine learning tasks at the same time}}
'''Multi-task learning''' (MTL) is a subfield of [[machine learning]] in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.<ref>Baxter, J. (2000). A model of inductive bias learning" ''Journal of Artificial Intelligence Research'' 12:149--198, [http://www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume12/baxter00a.pdf On-line paper]</ref><ref>[[Sebastian Thrun|Thrun, S.]] (1996). Is learning the n-th thing any easier than learning the first?. In Advances in Neural Information Processing Systems 8, pp. 640--646. MIT Press. [http://citeseer.ist.psu.edu/thrun96is.html Paper at Citeseer]</ref><ref name=":2">{{Cite journal|url = httphttps://www.cs.cornell.edu/~caruana/mlj97.pdf|title = Multi-task learning|last = Caruana|first = R.|date = 1997|journal = Machine Learning|doi = 10.1023/A:1007379606734|volume=28|pages=41–75|doi-access = free}}</ref>
Inherently, Multi-task learning is a [[multi-objective optimization]] problem having [[trade-off]]s between different tasks.<ref>Multi-Task Learning as Multi-Objective Optimization
Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018), https://proceedings.neurips.cc/paper/2018/hash/432aca3a1e345e339f35a30c8f65edce-Abstract.html</ref>