Graphical model: Difference between revisions

Content deleted Content added
no sentences
 
Line 5:
A '''graphical model''' or '''probabilistic graphical model''' ('''PGM''') or '''structured probabilistic model''' is a [[probabilistic model]] for which a [[Graph (discrete mathematics)|graph]] expresses the [[conditional dependence]] structure between [[random variable]]s. Graphical models are commonly used in [[probability theory]], [[statistics]]—particularly [[Bayesian statistics]]—and [[machine learning]].
 
==Types of graphical models==
Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a distribution over a multi-dimensional space and a graph that is a compact or [[Factor graph|factorized]] representation of a set of independences that hold in the specific distribution. Two branches of graphical representations of distributions are commonly used, namely, [[Bayesian network]]s and [[Markov random field]]s. Both families encompass the properties of factorization and independences, but they differ in the set of independences they can encode and the factorization of the distribution that they induce.<ref name=koller09>{{cite book
|author=Koller, D.