Content deleted Content added
→Applications: Insipid filler language |
reddit is not a reliable source Tags: Reverted 2017 wikitext editor |
||
Line 58:
=== Statistics ===
Machine learning and [[statistics]] are closely related fields in terms of methods, but distinct in their principal goal: statistics draws population [[Statistical inference|inferences]] from a [[Sample (statistics)|sample]], while machine learning finds generalisable predictive patterns.<ref>{{cite journal |first1=Danilo |last1=Bzdok |first2=Naomi |last2=Altman |author-link2=Naomi Altman |first3=Martin |last3=Krzywinski |title=Statistics versus Machine Learning |journal=[[Nature Methods]] |volume=15 |issue=4 |pages=233–234 |year=2018 |doi=10.1038/nmeth.4642 |pmid=30100822 |pmc=6082636 }}</ref
Conventional statistical analyses require the a priori selection of a model most suitable for the study data set. In addition, only significant or theoretically relevant variables based on previous experience are included for analysis. In contrast, machine learning is not built on a pre-structured model; rather, the data shape the model by detecting underlying patterns. The more variables (input) used to train the model, the more accurate the ultimate model will be.<ref>Hung et al. Algorithms to Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery. JAMA Surg. 2018</ref>
|