History of computer animation: Difference between revisions

Content deleted Content added
Osaka University: bare url corrected
 
Line 141:
 
===Osaka University===
In 1982, Japan's [[Osaka University]] developed the [[Supercomputing in Japan|LINKS-1 Computer Graphics System]], a [[supercomputer]] that used up to 257 [[Zilog Z8000|Zilog Z8001]] [[microprocessor]]s, used for rendering realistic [[3D computer graphics|3D]] [[computer graphics]]. According to the Information Processing Society of Japan: "The core of 3D image rendering is calculating the luminance of each pixel making up a rendered surface from the given viewpoint, [[Computer graphics lighting|light source]], and object position. The LINKS-1 system was developed to realize an image rendering methodology in which each pixel could be parallel processed independently using [[Ray tracing (graphics)|ray tracing]]. By developing a new software methodology specifically for high-speed image rendering, LINKS-1 was able to rapidly render highly realistic images." It was "used to create the world's first 3D [[planetarium]]-like video of the entire [[Universe|heavens]] that was made completely with computer graphics. The video was presented at the [[Fujitsu]] pavilion at the 1985 International Exposition in [[Tsukuba, Ibaraki|Tsukuba]]."<ref>{{Cite web | url=http://museum.ipsj.or.jp/en/computer/other/0013.html | title=LINKS-1 Computer Graphics System-Computer Museum}}</ref> The LINKS-1 was the world's most powerful computer, as of 1984.<ref>{{cite book | last=Defanti | first=Thomas A. | title=Advances in Computers | chapter=The Mass Impact of Videogame Technology | publisher=Elsevier | volume=23 | date=1984 | isbn=978-0-12-012123-6 | doi=10.1016/s0065-2458(08)60463-5 | doi-access=free | url=http://www.vasulka.org/archive/Writings/VideogameImpact.pdf#page=29 {{Bare URL PDF| access-date=March2025-08-30 2022| page=93–140}}</ref>
 
===3-D Fictional Animated Films at the University of Montreal===