Content deleted Content added
m wfy |
mNo edit summary |
||
Line 2:
MG can be applied in combination with any of the common discretization techniques. In these cases, multigrid is among the fastest solution techniques known today. In contrast to other methods, multigrid is general in that it can treat arbitrary regions and [[boundary condition]]s. It does not depend on the separability of the equations or other special properties of the equation. MG is also directly applicable to more complicated, non-symmetric and nonlinear systems of equations, like the [[Lamé system]] of [[elasticity]] or the [[Navier-Stokes equations]].
In all these cases, multigrid exhibits a convergence rate that is independent of the number of unknowns in the discretized system. It is therefore an optimal method. In combination with nested iteration it can solve these problems to truncation error accuracy in a number of operations that is proportional to the number of unknowns.
|