Controllo automatico: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m Definito un acronimo
Etichette: Modifica visuale Modifica da mobile Modifica da web per mobile
Ensahequ (discussione | contributi)
Riga 115:
 
===Controllo in retroazione di sistemi L.T.I. e L.I.T.===
Ogni blocco componente di un sistema Linear Time-Invariant [[Sistemasistema dinamico lineare stazionario|L.T.I.]] (LTI) può essere rappresentato tramite una [[funzione di trasferimento]] applicando al sottosistema che modella il blocco stesso rispettivamente la [[trasformata di Laplace]] o la [[trasformata Zeta]], a seconda che si tratti di sistemi a tempo continuo o a [[tempo discreto]]. Perciò il controllo LTI in [[retroazione]] è essenzialmente un sistema di controllo formato:
* dalla cascata di controllore <math>C(s)</math> o <math>C(z)</math> e processo <math>P(s)</math> o <math>P(z)</math> il cui ingresso è l'errore <math>E(s)</math> o <math>E(z)</math> tra riferimento <math>R(s)</math> o <math>R(z)</math> e uscita del processo <math>Y(s)</math> o <math>Y(z)</math>; le funzioni [[analisi complessa|complesse]] in ''s'' o in ''z'' sono rispettivamente le trasformate di Laplace o Zeta dei sistemi che rappresentano i blocchi e le trasformate di Laplace o Zeta dei segnali in ingresso e in uscita ai blocchi stessi.
* dal processo <math>P(s)</math> o <math>P(z)</math> la cui uscita <math>Y(s)</math> o <math>Y(z)</math> è prelevata da un [[compensatore dinamico]] <math>C(s)</math> (o <math>C(z)</math>) ottenuto come sintesi di un [[osservatore dello stato]] e di un [[controllo in retroazione dallo stato]], per esempio il [[regolatore lineare quadratico]], che genera l'ingresso di controllo <math>U(s)</math> o <math>U(z)</math> che si somma al riferimento <math>R(s)</math> o <math>R(z)</math>.