Varietà (geometria): differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m →Esempi: Sostituito l'immagine relativa alla sfera con la relativa versione SVG |
m →Classificazione in dimensione bassa: Sostituito l'immagine relativa alla bottiglia di Klein con la relativa versione SVG |
||
Riga 58:
Una varietà di dimensione <math>4</math> è un oggetto ancora più difficile da visualizzare. Lo studio delle varietà con quattro dimensioni è un punto centrale della matematica moderna, con numerosi collegamenti alla [[fisica teorica]]: la [[relatività generale]] descrive infatti lo [[spaziotempo]] come una <math>4</math>-varietà.
[[File:KleinBottle-01.
▲[[File:KleinBottle-01.png|thumb|left|upright=0.6|La [[bottiglia di Klein]]: ogni "quadratino" è contenuto in <math>\mathbb R^3</math>, ma la bottiglia di Klein non è un sottospazio di <math>\mathbb R^3</math> in quanto si autointerseca.]]
=== Varietà immerse ===
Sia <math>X</math> una varietà topologica di dimensione <math>n</math>. Si dice che <math>X</math> è ''immersa'' in <math>\mathbb R^m</math>, con <math>n\leq m</math>, se <math>X</math> è un sottospazio di <math>\mathbb R^m</math>. Un'''immersione'' (in inglese, '''embedding''') di <math>X</math> in <math>\mathbb R^m</math> è un'[[Immersione (matematica)|inclusione topologica]] <math>f:X\longrightarrow \mathbb R^m</math>, ovvero una mappa continua e iniettiva che induce un omeomorfismo con l'immagine <math>f(X)</math>. Un esempio di varietà immersa è quello della sfera <math>S^2</math> in <math>\mathbb R^3</math>. Non è vero che tutte le superfici si possono immergere in <math>\mathbb R^3</math>. La bottiglia di Klein <math>{\mathbb {K}^1}</math> è un esempio: benché si possa localmente immergere in <math>\mathbb R^3</math>, non è realizzabile "globalmente" come sottospazio di <math>\mathbb R^3</math> evitando "autointersezioni", ovvero conservando l'iniettività dell'immersione.
|