Assiomi di Peano: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Pokipsy76 (discussione | contributi)
Pokipsy76 (discussione | contributi)
ritocchi
Riga 32:
* (P5), l'ultimo assioma di Peano, è anche noto con il nome di [[Principio di induzione]] ed è uno strumento molto usato nelle [[dimostrazione|dimostrazioni]]: quello che ci dice è che l'insieme <math>\mathbb N</math> dei numeri naturali è il più piccolo insieme che contenga lo <math>0</math> e che contenga il successore di ogni suo elemento (cioè che sia ''chiuso'' rispetto alla funzione ''successore''). Questo assioma ci permette di escludere modelli in cui siano presenti degli elementi "intrusi" al di fuori della sequenza infinita dei successori dello zero.
 
== Unicità del modello a meno di isomorfismi ==
== Modelli alternativi ==
 
La struttura <math>(\mathbb N, 0, S)</math> '''non''' è l'unica a verificare gli assiomi di Peano. Chiamiamo ''sistema di Peano'' qualunque terna <math>(X,x_0,s)</math> che soddisfa gli assiomi:
Abbiamo visto che ciascun assioma consente di ridurre progressivamente il campo dei [[modello (logica)|modelli]] possibili tagliando fuori via via modelli che sono strutturalmente diversi dall'insieme dei numeri naturali (come l'insieme vuoto o insiemi con numero finito di elementi o strutture cicliche). Ora sorge una domanda: siamo sicuri che i cinque assiomi sono sufficienti a caratterizzare univocamente la struttura dei numeri naturali e non occorrono eventualmente altri assiomi?
 
La struttura <math>(\mathbb N, 0, S)</math> '''non''' è l'unica a verificare gli assiomi di Peano. Chiamiamo ''sistema di Peano'' qualunque terna <math>(X,x_0,s)</math> che soddisfa gli assiomi:
 
:(P1) <math>x_0 \in X</math>
Riga 44 ⟶ 47:
::allora <math>U=X</math>
 
Un sistema di Peano è dunque un [[modello (logica)|modello]] valido degli assiomi di Peano. Il modello più naturale per gli assiomi è la struttura <math>(\mathbb N, 0, S)</math>, tuttavia questa '''non''' è l'unica a verificare gli assiomi. Un esempio di sistema di Peano diverso da <math>(\mathbb N , 0, S)</math> si ha prendendo come <math>X</math> l'insieme dei numeri pari positivi <math>\{2,4,6,...\}</math>, <math>x_0:=2</math> e <math>s(x):=x+2</math>. Tuttavia abbiamo detto che gli assiomi di Peano caratterizzano i numeri naturali '''a meno di [[isomorfismo|isomorfismi]]'''. Più precisamente:
 
Un ''isomorfismo'' tra due ''sistemi di Peano'' <math>(A,a_0,s)</math> e <math>(B,b_0,t)</math> è una [[biiezione]] <math>f:A \to B</math> tale che: